
Generic Programming

John Reid, JKR Associates and

 Rutherford Appleton Laboratory

BCS Fortran Specialist Group

London, 28 September 2023

Abstract

WG5 has accepted a proposal from the Japanese
National Body for extending the generic capability
that has been present in Fortran since Fortran 90.

This will complement a much more ambitious US
proposal that has been developed by a J3 subgroup
since the 2019 WG5 meeting in Japan.

This talk will explain the Japanese proposal and give a
very brief summary of the aims of the US proposal.

2

Generic procedures in Fortran 2023

Several versions of a procedure, differing in
the type, kind, or rank of one or more
arguments, may be wanted.

Can write each version separately with
different names but merge them into one
procedure with a single name.

3

Fortran 2023 example
interface action

procedure real_action, double_action
end interface

contains
subroutine real_action (a)

real :: a
:

end subroutine
subroutine double_action (a)

double precision :: a
:

end subroutine
4

Generic procedures in Fortran 202y

• Declare the procedure as generic.

• It has no specific names (like many
intrinsics).

• Declare alternative types, kinds, and ranks
for some arguments.

• Use “meta select” blocks for code that
varies between versions.

• The compiler needs to generate specific
versions for all those actually invoked.

5

Fortran 202y example

Here is the equivalent of the code
on slide 4

generic subroutine action (a)
type(real, double precision) :: a
:

end subroutine

6

meta type construct

For code that depends on the type there
is the meta type construct

meta select type (a)
meta type (real)
: ! code for real version
meta type (double precision)
: ! code for double-precision version

end meta select

7

Multiple generic arguments

generic subroutine real_action (a, b)
type(real, double precision) :: a , b
requires that in a call a and b have the same

type so two versions are created.

generic subroutine real_action (a, b)
type(real, double precision) :: a
type(real, double precision) :: b
does not require that in a call a and b have

the same type so four versions are created.
8

typeof

typeof statements can be used to copy the
type and kind of a generic argument, for
example

generic subroutine real_action (a, b)
type(real, double precision) :: a
typeof (a) :: b
typeof (a) :: c ! Local variable

9

Generic rank

Alternative ranks for a dummy argument that
is assumed shape, allocatable, or a pointer
may be declared with the rank attribute (new
in Fortran 2023) having multiple values, for
example

generic subroutine action (a, b)
type(real), rank(1:3) :: a
type(real), rank(2,4), allocatable :: b

10

rankof
The rankof clause is added to allow the rank of a
generic argument to be copied, for example

generic subroutine real_action (a, b)
type(real), rank(1:3) :: a
type(real), rankof (a) :: b
type(real), allocatable, rankof (a) :: c ! Local variable

11

Meta select rank
For code that depends on the rank the
meta select rank construct is available

meta select rank (a)
meta rank (0)
: ! code for scalar version
meta rank (1)
: ! code for rank-1 version

end meta select

12

Summary
• Declare the procedure as generic.

• No specific names.

• Declare alternative types, kinds, and ranks for
arguments.

• Use meta select blocks for code that varies
between versions.

• The compiler generates specific versions for
those actually invoked.

• Compiler checks all versions and provides
diagnostics against the user’s code.

• Not hugely difficult to implement. 13

J3 generics proposal

This uses the term template to refer to a generic entity
that has dummy template parameters. Each wanted
version must be instantiated from the template by
specifying actual template parameters. A template
parameter may be a type, value, or procedure. The
association is like that of a procedure argument.
A template can define derived types, procedures,
interfaces, variables, other templates, constants, or
enumeration types.
Restrictions express relationships among template
parameters. Templates may contain requires statements
to express their requirements.
They aim to support containers such as a list, vector,
dictionary, set, stack, or queue.

14

J3 generics: a personal view

I confess to not fully understanding the
proposal but it appears to me to be too
complicated.

It is also far from complete.

I had hoped to show you how to create a
generic procedure comparable to that
available from the Japanese proposal, but I
have failed to see how to do this.

15

Addendum, 10 Oct 2023

The latest J3 generics paper, 23-222, shows that the
intention is to allow the instantiate statement to
rename entities accessed from a template. This
allows me to construct code, see next slide,
comparable to that in slide 6:

generic subroutine action (a)
type(real, double precision) :: a
:

end subroutine

16

Fortran 202y example
equivalent of the code on slide 6

template actions(t)
type, deferred :: t

contains
subroutine action (a)
type(t) :: a
:

end subroutine
end template actions

interface action
procedure real_action, double_action

end interface
contains

instantiate actions (real), real_action => action
instantiate actions (double precision), double_action => action

17

	Slide 1: Generic Programming
	Slide 2: Abstract
	Slide 3: Generic procedures in Fortran 2023
	Slide 4: Fortran 2023 example
	Slide 5: Generic procedures in Fortran 202y
	Slide 6: Fortran 202y example
	Slide 7: meta type construct
	Slide 8: Multiple generic arguments
	Slide 9: typeof
	Slide 10: Generic rank
	Slide 11: rankof
	Slide 12: Meta select rank
	Slide 13: Summary
	Slide 14: J3 generics proposal
	Slide 15: J3 generics: a personal view
	Slide 16: Addendum, 10 Oct 2023
	Slide 17: Fortran 202y example equivalent of the code on slide 6

