
The new features of Fortran 2023

John Reid,  JKR Associates and

Rutherford Appleton Laboratory

BCS Fortran Specialist Group

London, 29 September 2022



Abstract

The Fortran 2023 standard is near finalization. 

It is subject to a DIS (Draft International Standard) 
vote that is active now. There is no sign of 
controversy. Final publication is expected in 
October 2023. 

The changes were all minor. I will describe the 
most significant ones. 

I have provided a summary of all the new features 
as N2194 on the WG5 site, 

https://wg5-fortran.org/

2



Length limits
In free source form:

• Line-length limit raised to 10,000 
characters.

• Limit of 255 continuation lines removed.

• Statement-length limit is raised to a million 
characters.

These relaxations are designed to support 
programs that are constructed mechanically.

These are hard limits. Processors are required 
to issue warnings if they are breached.

3



Length of character variables
If a deferred-length allocatable variable is defined by 
intrinsic assignment:
character(:), allocatable :: quotation

:

quotation = “How now, brown cow?”

it is allocated by the processor to the correct length.

Also messages returned through iomsg and 
errmsg specifiers, writing to a scalar character 
variable as an internal file, and intent out and 
inout character arguments of intrinsic procedures, 
such as in

call get command(command)

4



Conditional expressions
Conditional expressions added. 

A simple example is
value = ( a>0.0 ? a : 0.0)

which is a short way of writing
if (a>0.0) then

value = a

else

value = 0.0

end if

The general form is

( cond ? expr [ : cond ? expr]... : expr )

5



Conditional arguments
Conditional arguments added. 

call sub( (x>0? x : y>0? y : z), 0 )

General form of conditional argument is

( cond ? arg [ : cond ? arg] ... : arg)

where each arg is an expression, a variable, or 
.nil. to specify absence. 

The args other than .nil.must have the same 
rank, type, and kind. If one is allocatable or a 
pointer, they must all be. This ensures that 
generic resolution is at compile time. 

6



Arrays with coarray components

An object of a type that has a coarray 
component is allowed to be an array or 
allocatable, but not a coarray (which would 
be confusing).

type mine

a[*]

end type

type (mine), allocatable :: x(:), y

allocate (y) ! y%a unallocated 

allocate is not an image control statement 
but deallocate needs to be.  

7



Put with notify
Popular in the SHMEM community. Example:

use iso_fortran_env

type(notify_type) nx[*] ! Has count

that is initially 0

:

if(this_image()/=10) then

x[10, notify=nx] = y

else if(this_image()==10) then

notify wait (nx, until_count=1)

z = x

end if

Notify variable can be changed only this way and 
each update is atomic. 

8



Reduction specifier for do concurrent
do concurrent(i = 1, n)reduce(+:a) &

reduce(max:b)

a = a + x(i)**2

b = max(b,x(i))

end do

A reduction variable must appear as

var = var op expr or var = expr op var where op is

+, *, .and., .or., .eqv., or .neqv. 

or as 

var = fun(var, expr) or var = fun (expr, var) where fun is

max, min, iand, ieor, or ior

All occurences in the construct must have the same form.
9



Simple procedures

A pure procedure changes variables only through its 
arguments (no side effects).

A simple procedure is a pure procedure that references 
variables only through its arguments , e.g. sin(x).

It is an entirely local calculation that may be executed by 
a thread accessing only the arguments.

All the functions that are intrinsic or defined in intrinsic 
modules are simple. So are many intrinsic subroutines. 

A user-written procedure declared simple in its prefix: 

real simple elemental function convert(a)

is required to satisfy checkable restrictions.
10



Enumeration types
enumeration type :: colour

enumerator :: red, orange, green

end type

type(colour) light, dark

:

if (light==red) dark = colour(3)

Indexing and comparison (<, <=, >, >=, ==,\=) are 
by position in the declaration.

The only values are the enumerators of the type.

An enumeration type is not a derived type but 
behaves like a derived type with no components.

11



Enumeration types (cont)

Can be used in select case construct:
select case (light)

case (red)

:

case (orange:green)

:

end select

Intrinsic  int returns position in declaration and 
intrinsics next and previous added.

In formatted i/o, treated as an integer. Not 
allowed in list-directed and namelist i/o. 

12



Enum types
In Fortran 2018, an enumeration is an ordered collection 
of integer constants of a kind that interoperates with C. 
To get some safety, enum type has been added:

enum, bind(c) :: season

enumerator :: spring=5, summer=7, &  

autumn, winter

end type

type(season) my_season, your_season

Values other than the enumerators can occur. 

Intrinsic  int returns the value.  

Indexing and comparison (<, <=, >, >=, ==,\=) 
are by value in the declaration. 

13



Enum types (cont)

Numeric operations between enums and integers 
not permitted but comparisons are. 

if(my_season==7)your_season=season(9)

An integer expression is said to `type-conform' 
with an enum type if it contains a primary that is 
an enumerator of the type. 

In an assignment statement with a  left-hand side 
of enum type, the right-hand side must conform 
with it. 

Can be used in select case construct.

14



Using integer arrays for subscripts

A multiple subscript specifies a sequence of subscripts by 
@ int-expr where int-exp is a rank-one integer 
expression, e.g.

a(@[3,5])     ! a(3,5)

a(6,@[3,5],1) ! a(6,3,5,1)

A multiple subscript triplet specifies a sequence of 
section subscripts by @ [int-expr] : [int-expr] [ : int-expr] 
where each int-expr is a rank-one array or scalar, e.g.

a(@[3,5]:[9,10]:[2,3]) ! a(3:9:2, 5:10:3)

a(@[3,5]:[9,10]:2)     ! a(3:9:2, 5:10:2)

a(@[3,5]:[9,10])       ! a(3:9, 5:10)

15



Using integer arrays for ranks and 
bounds

Rank and lower bounds of an assumed-shape array:

real :: zz(lb_array+2:)

Rank and  bounds of an explicit-shape array:
real :: zz(lb_array+2:n), x(ub_array)

real :: y(0:ub_array)

Bounds of an allocatable array:
allocate(x(:upper), y(lower:upper), &  

z(0:upper))

Bounds in a pointer remapping
y(lower:)  => x

z(0:upper) => x

16



system_clock([count, &            

count_rate,count_max])

In Fortran 2018, arguments can be integers of any 
kind (to allow long integers).  Vendors inconsistent 
for non-long and differing kinds of arguments .

All integer arguments in a single call will have the 
same kind and range at least default integer. 

Support of long integers recommended. 

There may be any number of clocks, including zero. 
Which is referenced depends on the kind. 

Whether an image has no clock, has one or more 
clocks of its own, or shares a clock with another 
image, is processor dependent.

17



More values of intrinsic kinds

Additional named constants in the module 
iso_fortran_env for kinds of intrinsic type:

logical8 8-bit logical

logical16 16-bit logical

logical32 32-bit logical

logical64 64-bit logical

real16   16-bit real

-2 does not support this but supports a larger size

-1 does not support this or a larger size.

18



Intrinsic procedure c_f_pointer

To bring c_f_pointer into line with pointer 
assignment, an extra optional argument lower has 
been added to specify the lower bounds of the 
pointer result. 

19



More use of boz constants

Binary, octal, and hexadecimal (boz) constants will be 
allowed in

• an initialization of a named object of type integer or real,

• as the right-hand side of an intrinsic assignment to a 
variable is of type integer or real,

• as a value in an integer or real array constructor, or

• as an integer value in an enum constructor.

Example:

I = z’a51f’

20



Trig functions that work in degrees

sind(x)returns the sine function for real 
values of x in degrees.

Similarly for cosd(x) and tand(x)

asind(x)returns inverse sine function in 
degrees.

Similarly for acosd(x), atand(x),
atand(y,x), and atan2d(y,x).

21



Trig functions that work in half revs

sindpi(x) returns the sine function for real 
values of x in half revolutions (180 degrees).

Similarly for cospi(x) and tanpi(x)

asinpi(x) returns inverse sine function in 
half revolutions .

Similarly for acospi(x), atanpi(x),
atanpi(y,x), and atan2pi(y,x).

22



Select kind for logicals

selected_logical_kind(bits) 

returns the kind value for a logical type whose 
storage size in bits is at least bits, or -1 if 
no such type is available.

23



Obsolete and deleted features

No more features have been added to the lists of 
obsolete and deleted features.

24



Summary

We have discussed
• Lengths of lines and character variables
• Conditional expressions and arguments
• Arrays with coarray components
• Put with notify
• Reduction in do concurrent
• Simple procedures
• enumeration and enum types
• Using arrays for subscripts and bounds
• System clock clarifications
• Some smaller changes

25


