
1

Getting Fortran onto GPUs
Jeff Hammond and Jeff Larkin
NVIDIA HPC Group

2

Outline

• Where are we now?

• DO CONCURRENT

• Data parallel intrinsics

• Directives

• CUDA support

• Where do we want to go?

• Fetching atomics in DO CONCURRENT

• Asynchrony and task parallelism

3

Programming the nvidia platform WITH FORTRAN
CPU, GPU, and Network

PLATFORM SPECIALIZATION
CUDA

ACCELERATION LIBRARIES

CUDA Runtime CUTENSORCUBLAS CUSOLVER … NVSHMEM

do concurrent (j=1:order, &
i=1:order)

B(i,j) = A(j,i)
enddo

B = transpose(A)

ACCELERATED STANDARD MODELS PLATFORM SPECIALIZATION

!$acc parallel loop tile(32,32)
do j=1,order
do i=1,order

B(i,j) = A(j,i)
enddo

enddo

!$acc kernels
do j=1,order
do i=1,order

B(i,j) = A(j,i)
enddo

enddo
!$acc end kernels

!$omp target teams distribute &
parallel do simd &
collapse(2)

do j=1,order
do i=1,order
B(i,j) = A(j,i)

enddo
enddo

!$omp target teams loop &
collapse(2)

do j=1,order
do i=1,order
B(i,j) = A(j,i)

enddo
enddo

ISO Fortran OpenACC OpenMP CUDA Fortran

BIDX = blockIdx%x-1
BIDY = blockIdx%y-1
TIDX = threadIdx%x
TIDY = threadIdx%y

x = BIDX * TILE + TIDX;
y = BIDY * TILE + TIDY;
do j = 0,TILE-1,block_rows

SM(TIDX,TIDY+j) = A(x,y+j);
end do

call syncThreads()

x = BIDY * TILE + TIDX;
y = BIDX * TILE + TIDY;
do j = 0,TILE-1,block_rows

B(x,y+j) = SM(TIDY+j,TIDX)
end do

4

HPC PROGRAMMING IN ISO FORTRAN

Fortran 2018 Fortran 202x

Fortran Array Math Intrinsics
Ø NVFORTRAN 20.5

Ø Accelerated matmul, reshape, spread, …

DO CONCURRENT
Ø NVFORTRAN 20.11

Ø Auto-offload & multi-core

Co-Arrays
Ø Not currently available

Ø Accelerated co-array images

DO CONCURRENT Reductions
Ø NVFORTRAN 21.11

Ø REDUCE subclause added

Ø Support for +, *, MIN, MAX, IAND, IOR, IEOR.

Ø Support for .AND., .OR., .EQV., .NEQV on LOGICAL values

ISO is the place for portable concurrency and parallelism

Preview support available now in NVFORTRAN

5

MiniWeather
Standard Language Parallelism in Climate/Weather Applications

Mini-App written in C++ and Fortran that simulates
weather-like fluid flows using Finite Volume and
Runge-Kutta methods.

Existing parallelization in MPI, OpenMP, OpenACC, …

Included in the SPEChpc benchmark suite*

Open-source and commonly-used in training events.

https://github.com/mrnorman/miniWeather/

MiniWeather

0

10

20

Ope
nM

…

Co
nc

ur
r…

Co
nc

ur
r…

Ope
nA

CC

do concurrent (ll=1:NUM_VARS, k=1:nz, i=1:nx)
local(x,z,x0,z0,xrad,zrad,amp,dist,wpert)

if (data_spec_int == DATA_SPEC_GRAVITY_WAVES) then
x = (i_beg-1 + i-0.5_rp) * dx
z = (k_beg-1 + k-0.5_rp) * dz

x0 = xlen/8
z0 = 1000
xrad = 500
zrad = 500
amp = 0.01_rp
dist = sqrt(((x-x0)/xrad)**2 + ((z-z0)/zrad)**2)

* pi / 2._rp
if (dist <= pi / 2._rp) then
wpert = amp * cos(dist)**2

else
wpert = 0._rp

endif
tend(i,k,ID_WMOM) = tend(i,k,ID_WMOM)

+ wpert*hy_dens_cell(k)
endif
state_out(i,k,ll) = state_init(i,k,ll)

+ dt * tend(i,k,ll)

enddo Source: HPC SDK 22.1, AMD EPYC 7742, NVIDIA A100. MiniWeather: NX=2000, NZ=1000, SIM_TIME=5.
OpenACC version uses –gpu=managed option.*SPEChpc is a trademark of The Standard Performance Evaluation Corporation

https://github.com/mrnorman/miniWeather/

6

POT3D: Do Concurrent + Limited OpenACC

POT3D is a Fortran application for approximating solar
coronal magnetic fields.

Included in the SPEChpc benchmark suite*

Existing parallelization in MPI & OpenACC

Optimized the DO CONCURRENT version by using
OpenACC solely for data motion and atomics

https://github.com/predsci/POT3D

POT3D

!$acc enter data copyin(phi,dr_i)
!$acc enter data create(br)
do concurrent (k=1:np,j=1:nt,i=1:nrm1)

br(i,j,k)=(phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
enddo
!$acc exit data delete(phi,dr_i,br)

Data courtesy of Predictive Science Inc. *SPEChpc is a trademark of The Standard Performance Evaluation Corporation

https://github.com/predsci/POT3D

7

GAMESS
Computational Chemistry with Fortran Do Concurrent

• GAMESS is a popular Quantum Chemistry application.

• More than 40 years of development in Fortran and C

• MPI + OpenMP baseline code

• Hartree-Fock rewritten in Do Concurrent

1.0X

1.3X

3.9X

0.0X

0.5X

1.0X

1.5X

2.0X

2.5X

3.0X

3.5X

4.0X

4.5X

OpenMP (CPU) OpenMP (GPU) Do Concurrent (GPU)

S
pe
ed
-U
p

Fock Build

nvfortran 22.7, NVIDIA A100 GPU, AMD “Milan” CPU

* Courtesy of Melisa Alkan, Iowa State University. Not yet published.

!pre-sorting, screening

!$omp target teams distribute &
parallel do &

!$omp shared() private()
do iquart = 1, ssdd_quarts
!recover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
lsh=IDX(d_sh)
!compute ints
!digest ints

enddo

!pre-sorting, screening

DO CONCURRENT(iquart=1::ssdd_quarts)&
SHARED() LOCAL()

!recover shell index
ish=IDX(s_sh)
jsh=IDX(s_sh)
ksh=IDX(d_sh)
lsh=IDX(d_sh)
!compute ints
!digest ints

enddo

8

MATMUL FP64 matrix multiplyInline FP64 matrix multiply

ACCELERATED PROGRAMMING IN ISO FORTRAN
NVFORTRAN Accelerates Fortran Intrinsics with cuTENSOR Backend

0

5

10

15

20

Naïve Inline
V100

FORTRAN
V100

FORTRAN
A100

TF
LO
Ps

real(8), dimension(ni,nk) :: a
real(8), dimension(nk,nj) :: b
real(8), dimension(ni,nj) :: c
...
!$acc enter data copyin(a,b,c) create(d)

do nt = 1, ntimes
!$acc kernels
do j = 1, nj

do i = 1, ni
d(i,j) = c(i,j)
do k = 1, nk

d(i,j) = d(i,j) + a(i,k) * b(k,j)
end do

end do
end do

!$acc end kernels
end do
!$acc exit data copyout(d)

real(8), dimension(ni,nk) :: a
real(8), dimension(nk,nj) :: b
real(8), dimension(ni,nj) :: c

...

do nt = 1, ntimes
d = c + matmul(a,b)

end do

Utilizes A100 Tensor
Cores automatically

9

HPC PROGRAMMING IN ISO FORTRAN

d = 2.5 * ceil(transpose(a)) + 3.0 * abs(transpose(b))

d = 2.5 * ceil(transpose(a)) + 3.0 * abs(b)

d = reshape(a,shape=[ni,nj,nk])

d = reshape(a,shape=[ni,nk,nj])

d = 2.5 * sqrt(reshape(a,shape=[ni,nk,nj],order=[1,3,2]))

d = alpha * conjg(reshape(a,shape=[ni,nk,nj],order=[1,3,2]))

d = reshape(a,shape=[ni,nk,nj],order=[1,3,2])

d = reshape(a,shape=[nk,ni,nj],order=[2,3,1])

d = reshape(a,shape=[ni*nj,nk])

d = reshape(a,shape=[nk,ni*nj],order=[2,1])

d = reshape(a,shape=[64,2,16,16,64],order=[5,2,3,4,1])

d = abs(reshape(a,shape=[64,2,16,16,64],order=[5,2,3,4,1]))

c = matmul(a,b)

c = matmul(transpose(a),b)

c = matmul(reshape(a,shape=[m,k],order=[2,1]),b)

c = matmul(a,transpose(b))

c = matmul(a,reshape(b,shape=[k,n],order=[2,1]))

c = matmul(transpose(a),transpose(b))

c = matmul(transpose(a),reshape(b,shape=[k,n],order=[2,1]))

d = spread(a,dim=3,ncopies=nk)

d = spread(a,dim=1,ncopies=ni)

d = spread(a,dim=2,ncopies=nx)

d = alpha * abs(spread(a,dim=2,ncopies=nx))

d = alpha * spread(a,dim=2,ncopies=nx)

d = abs(spread(a,dim=2,ncopies=nx))

d = transpose(a)

d = alpha * transpose(a)

d = alpha * ceil(transpose(a))

d = alpha * conjg(transpose(a))

c = c + matmul(a,b)

c = c - matmul(a,b)

c = c + alpha * matmul(a,b)

d = alpha * matmul(a,b) + c

d = alpha * matmul(a,b) + beta * c

Examples of Patterns Accelerated in NVFORTRAN

10

Refactoring Fortran Loops
1. Identify an important loop nest that can be run in parallel.

!Compute fluxes in the x-direction for each cell
do k = 1 , nz+1

do i = 1 , nx
!Use fourth-order interpolation from four cell averages
!to compute the value at the interface in question
do ll = 1 , NUM_VARS

do s = 1 , sten_size
stencil(s) = state(i,k-hs-1+s,ll)

enddo
!Fourth-order-accurate interpolation of the state

enddo

!Compute density, u-wind, w-wind, potential
!temperature, and pressure (r,u,w,t,p respectively)
r = vals(ID_DENS) + hy_dens_int(k)
u = vals(ID_UMOM) / r
w = vals(ID_WMOM) / r
t = (vals(ID_RHOT) + hy_dens_theta_int(k)) / r
p = C0*(r*t)**gamma - hy_pressure_int(k)

...

enddo
enddo

*Code from MiniWeather mini-app, trimmed for space.

11

Refactoring Fortran Loops
1. Identify an important loop nest that can be run in parallel.

2. Replace existing loops with do concurrent loops

Note: Multiple loop iteration variables can be used in the
same do concurrent loop, if they are all legal to
parallelize

!Compute fluxes in the x-direction for each cell
do concurrent (k=1:nz, i=1:nx+1)

!Use fourth-
order interpolation from four cell averages

!to compute the value at the interface in question
do ll = 1 , NUM_VARS

do s = 1 , sten_size
stencil(s) = state(i,k-hs-1+s,ll)

enddo
!Fourth-order-accurate interpolation of the state

enddo

!Compute density, u-wind, w-wind, potential
!temperature, and pressure (r,u,w,t,p respectively)
r = vals(ID_DENS) + hy_dens_int(k)
u = vals(ID_UMOM) / r
w = vals(ID_WMOM) / r
t = (vals(ID_RHOT) + hy_dens_theta_int(k)) / r
p = C0*(r*t)**gamma - hy_pressure_int(k)

...

enddo

*Code from MiniWeather mini-app, trimmed for space.

12

Refactoring Fortran Loops
1. Identify an important loop nest that can be run in parallel.

2. Replace existing loops with do concurrent loops

Note: Multiple loop iteration variables can be used in the
same do concurrent loop, if they are all legal to
parallelize

3. Add local clause for variables that must be privatized for
correctness.

!Compute fluxes in the x-direction for each cell
do concurrent (k=1:nz, i=1:nx+1) &

local(d3_vals,vals,stencil,ll,s,r,u,t,p,w)
!Use fourth-order interpolation from four cell averages
!to compute the value at the interface in question
do ll = 1 , NUM_VARS

do s = 1 , sten_size
stencil(s) = state(i,k-hs-1+s,ll)

enddo
!Fourth-order-accurate interpolation of the state

enddo

!Compute density, u-wind, w-wind, potential
!temperature, and pressure (r,u,w,t,p respectively)
r = vals(ID_DENS) + hy_dens_int(k)
u = vals(ID_UMOM) / r
w = vals(ID_WMOM) / r
t = (vals(ID_RHOT) + hy_dens_theta_int(k)) / r
p = C0*(r*t)**gamma - hy_pressure_int(k)

...

enddo

*Code from MiniWeather mini-app, trimmed for space.

13

Refactoring Fortran Loops
1. Identify an important loop nest that can be run in parallel.

2. Replace existing loops with do concurrent loops

Note: Multiple loop iteration variables can be used in the
same do concurrent loop, if they are all legal to
parallelize

3. Add local clause for variables that must be privatized for
correctness.

4. Recompile with –stdpar and test for correctness.

Note 1: Only refactor one loop nest at a time to ensure
errors aren’t introduced, such as forgetting to localize a
variable.

Note 2: Performance may get worse at first due to
increased memory migration.

!Compute fluxes in the x-direction for each cell
do concurrent (k=1:nz, i=1:nx+1) &

local(d3_vals,vals,stencil,ll,s,r,u,t,p,w)
!Use fourth-order interpolation from four cell averages
!to compute the value at the interface in question
do ll = 1 , NUM_VARS

do s = 1 , sten_size
stencil(s) = state(i,k-hs-1+s,ll)

enddo
!Fourth-order-accurate interpolation of the state

enddo

!Compute density, u-wind, w-wind, potential
!temperature, and pressure (r,u,w,t,p respectively)
r = vals(ID_DENS) + hy_dens_int(k)
u = vals(ID_UMOM) / r
w = vals(ID_WMOM) / r
t = (vals(ID_RHOT) + hy_dens_theta_int(k)) / r
p = C0*(r*t)**gamma - hy_pressure_int(k)

...

enddo

*Code from MiniWeather mini-app, trimmed for space.

14

Refactoring Fortran Loops
1. Identify an important loop nest that can be run in parallel.

2. Replace existing loops with do concurrent loops

Note: Multiple loop iteration variables can be used in the
same do concurrent loop, if they are all legal to
parallelize

3. Add local clause for variables that must be privatized for
correctness.

4. Recompile with –stdpar and test for correctness.

Note 1: Only refactor one loop nest at a time to ensure
errors aren’t introduced, such as forgetting to localize a
variable.

Note 2: Performance may get worse at first due to
increased memory migration.

5. Increase the number of concurrent loops to run more work
in parallel and reduce memory migration on GPU.

!Compute fluxes in the x-direction for each cell
do concurrent (k=1:nz, i=1:nx+1) &
local(d3_vals,vals,stencil,ll,s,r,u,t,p,w)
!Use fourth-order interpolation from four cell averages
!to compute the value at the interface in question
do ll = 1 , NUM_VARS
do s = 1 , sten_size
stencil(s) = state(i,k-hs-1+s,ll)

enddo
!Fourth-order-accurate interpolation of the state

enddo

!Compute density, u-wind, w-wind, potential
!temperature, and pressure (r,u,w,t,p respectively)
r = vals(ID_DENS) + hy_dens_int(k)
u = vals(ID_UMOM) / r
w = vals(ID_WMOM) / r
t = (vals(ID_RHOT) + hy_dens_theta_int(k)) / r
p = C0*(r*t)**gamma - hy_pressure_int(k)

...

enddo

do concurrent (k=1:nz,i=1:nx) reduce(+:mass,te)
mass = mass + r *dx*dz ! Accumulate domain mass
te = te + (ke + r*cv*t)*dx*dz

enddo

*Code from MiniWeather mini-app, trimmed for space.

15

Other Examples

• Bristol BabelStream

• Modern Fortran implementation of BabelStream.

• Preprint available upon request.

• https://github.com/jeffhammond/BabelStream/tree/fortran-ports

• NWChem TCE CCSD(T) kernels

• 6D = 4D x 4D tensor contractions from quantum chemistry with
different memory access patterns.

• https://github.com/jeffhammond/nwchem-tce-triples-kernels

• Parallel Research Kernels (PRK)

• Shows simple patterns implemented in 50+ different programming
languages x models, including Fortran StdPar, OpenACC, OpenMP, etc.

• https://github.com/ParRes/Kernels/

• GPU Gearbox

• Based on PRK codes

• https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/
0

200

400

600

800

1000

1200

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

G
F/
s

kernel

NWChem TCE CCSD(T) kernels

OpenMP CPU StdPar GPU OpenACC GPU OpenMP GPU

https://github.com/jeffhammond/BabelStream/tree/fortran-ports
https://github.com/jeffhammond/nwchem-tce-triples-kernels
https://github.com/ParRes/Kernels/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41620/

16

Fortran Future Features?

17

Parallelism in Fortran 2018

! coarse-grain parallelism

np = num_images()

n_local = n / np

! X, Y, Z are coarrays

do i=1,n_local

Z(i) = X(i) + Y(i)

end do

sync all

! fine-grain parallelism

! explicit

do concurrent (i=1:n)

Z(i) = X(i) + Y(i)

end do

! implicit

MATMUL

TRANSPOSE

RESHAPE

...

18

Do Concurrent Locality Specifiers and Atomics (2023)

! Scalar reduction – probably implemented with privatization

do concurrent (i=1:n) reduce(Z:+)

Z = X(i) / Y(i)

end do

! Array reduction – probably implemented with atomics

do concurrent (i=1:n) reduce(Z:+)

Z(i) = Z(i) + decision(i)

end do

19

What if we need to use the result?

! Inserting into an array

offset = 1

do concurrent (i=1:n) shared(X,offset) local(s,stuff)

stuff = ..

s = size(stuff)

!$omp/acc atomic capture

j = offset

offset = offset + size

!$omp/acc end atomic capture

X(j:j+size) = stuff

end do

20

What if we need to use the result?

! Inserting into an array

offset = 1

do concurrent (i=1:n) shared(X,offset) local(s,stuff)

stuff = ..

s = size(stuff)

call atomic_fetch_add(offset, size, j) ! coarrays

X(j:j+size) = stuff

end do

21

What if we need to use the result?

! Inserting into an array

offset = 1

do concurrent (i=1:n) shared(X) local(s,stuff) fetched(offset:+)

stuff = ..

s = size(stuff)

j = offset = offset + s ! Syntax to be determined later

X(j:j+size) = stuff

end do

22

Asynchrony

23

Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential

call my_input(X,Y)

! parallel

do concurrent (i=1:n)

Z(i) = X(i) + Y(i)

end do

! sequential

call my_output(Z)

24

Motivation for Asynchrony 1

0 1 2 3

4 core CPU

Sequential

Sequential

Parallel

Fork

Join

! sequential

call my_input(X,Y)

! parallel

do concurrent (i=1:n)

Z(i) = X(i) + Y(i)

end do

! sequential

call my_unrelated(A)

25

Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

Sequential

Parallel

Fork

Join

! sequential on CPU

call my_input(X,Y)

! parallel on GPU

do concurrent (i=1:n)

Z(i) = X(i) + Y(i)

end do

! sequential on CPU

call my_unrelated(A)

26

Motivation for Asynchrony 1

0 GPU

CPU+GPU

Sequential

SequentialParallel

Fork

Join

! sequential on CPU

call my_input(X,Y)

! parallel on GPU w/ async

do concurrent (i=1:n)

Z(i) = X(i) + Y(i)

end do

! sequential on CPU w/ async

call my_unrelated(A)

Savings

27

Motivation for Asynchrony 2 (synthetic)

call sub1(IN=A,OUT=B)

call sub2(IN=C,OUT=D)

call sub3(IN=E,OUT=F)

call sub4(IN=B,IN=D,OUT=G)

call sub5(IN=F,IN=G,OUT=H)

! 5 steps require only 3 phases

A C E

B D F

1 2 3

G

G

4 4

5

5

Fortran compilers may be able to prove
these procedures are independent but it is
often impossible to prove that executing
them in parallel is profitable.

28

Motivation for Asynchrony 2 (realistic)

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w

https://dl.acm.org/doi/10.1145/2425676.2425687
https://pubs.acs.org/doi/abs/10.1021/ct100584w

29

Both of the popular directive-based models for parallel computing support asynchronous
tasks in a range of operations.

OpenACC supports async and wait, with an implicit/default queue (stream) as well as
explicit/numbered queues, and the ability to create dependency chains between
operations, similar to CUDA streams.

OpenMP supports tasks with dependencies (and without). The syntax for dependencies is
finer granularity - based on data references rather than queues - and the
implementation may end up using a global queue as a result.

There are merits to both approaches, so the Fortran community will have to think about
what form should be standardized.

Prior Art in OpenMP and OpenACC

30

Prior Art in OpenMP and OpenACC

!$omp parallel

!$omp master

do j=1,n

do i=1,m

!$omp task

!$omp& depend(in:grid(i-1)) &

!$omp& depend(out:grid(j))

...

!$omp end task

enddo

enddo

do i=1,n

!$acc parallel loop async(i)

do j=1,m

...

enddo

enddo

do i=1,n

!$acc parallel loop async(i)

do j=1,m

...

enddo

enddo

!$acc wait
e.g. https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90

These are examples of different things. Please don’t try to compare them.

https://github.com/ParRes/Kernels/blob/default/FORTRAN/p2p-tasks-openmp.F90

31

Example

module numerot

contains

pure real function yksi(X)

real, intent(in) :: X(100)

!real, intent(out) :: R

yksi = norm2(X)

end function yksi

pure real function kaksi(X)

real, intent(in) :: X(100)

kaksi = 2*norm2(X)

end function kaksi

pure real function kolme(X)

real, intent(in) :: X(100)

kolme = 3*norm2(X)

end function kolme

end module numerot

program main

use numerot

real :: A(100), B(100), C(100)

real :: RA, RB, RC

A = 1; B = 1; C = 1

RA = yksi(A)

RB = kaksi(B)

RC = kolme(C)

print*,RA+RB+RC

end program main

https://github.com/jeffhammond/blog/tree/main/CODE

https://github.com/jeffhammond/blog/tree/main/CODE

32

Coarrays are designed to support
distributed memory, hence are based on
image-private data.

There is limited opportunity for shared-
memory optimizations in such codes, as
direct inter-image copies will be
required.

One of the common motivations for
task-based models is dynamic load-
balancing, but coarrays provide no
mechanism for doing this, so users will
have to write their own, which they
always do poorly.

A coarray implementation?

program main

use numerot

real :: A(100) ! each image has one

real :: R

A = 1

if (num_images().ne.3) STOP

if (this_image().eq.1) R = yksi(A)

if (this_image().eq.2) R = kaksi(A)

if (this_image().eq.3) R = kolme(A)

sync all

call co_sum(R)

if (this_image().eq.1) print*,R

end program main

33

This implementation only supports
independent tasks, and is likely
completely useless when the
implementation uses SIMD lanes or GPU
threads for DO CONCURRENT (DC).

As with coarrays, the if (...eq...) is not
scalable to more general examples. Do
we want arrays of functions?

Both the coarray and DC are also tedious
and error prone, which is a good
justification for adding new language
features.

A do concurrent implementation?

program main

use numerot

real :: A(100), B(100), C(100)

real :: RA, RB, RC

integer :: k

A = 1; B = 1; C = 1

do concurrent (k=1:3) ! reduction, someday

if (k.eq.1) RA = yksi(A)

if (k.eq.2) RB = kaksi(B)

if (k.eq.3) RC = kolme(C)

end do

print*,RA+RB+RC

end program main

34

do i=1,n

task block async(i)

do j=1,m

...

enddo

end task block

enddo

task sync all

What might Fortran tasks look like?

The block mechanism is used for scoping.

Prepending task implies this block scope
is also a task, which can execute
asynchronously until synchronized.

Important questions:
• Is everything (e.g. I/O) allowed to be

in a task?
• How do tasks interact with shared

state?

35

do i=1,n

task block async(i)

type :: private

do j=1,m

...

enddo

end task block

enddo

task sync all

What might Fortran tasks look like?

The block mechanism is used for scoping.

Prepending task implies this block scope
is also a task.

It is essential to be able to have task-
private state, which is already covered
by the block feature.

36

real :: x

do i=1,n

task block async(i) shared(x)

type :: private

do j=1,m

...

enddo

end task block

enddo

task sync all

What might Fortran tasks look like?

We also want to be able to describe the
intent of data outside of the task, so we
could reuse locality specifiers from DO
CONCURRENT.

Locality specifiers already match
OpenMP syntax, and a related feature in
Fortran, so they are likely to be intuitive
to Fortran programmers.

Task reductions are supported by
OpenMP now, but the concept is tricky.

Atomics would be nice but that’s a big
bag of worms.

37

real :: x

do i=1,n

task call foo(i,x)

enddo

task wait

do i=1,n

task call foo(i,x) async(mod(i,2))

enddo

task sync 0

...

task sync 1

What might Fortran tasks look like?

Calling subroutines as tasks is useful, but
they should be pure in order to have
reasonable behavior.

The right syntax for this is not obvious,
but we can solve that later.

38

Summary

Fortran has two great ways to write parallel code, but needs a third.

Shared-memory task parallelism is implemented in OpenMP, OpenACC, and in models
associated with languages that aren’t Fortran.

Task parallelism allows users to solve new types of problems and make better use of
existing parallel features, especially DO CONCURRENT (e.g. when executing on GPUs).

Fortran tasks make new things possible and obviate the need for tedious and error prone
implementations. They also reduce the need for non-standard extensions like OpenMP
and OpenACC.

Please do not let whatever you don’t like about my syntax to get in the way 🙂

39

J3/WG5 papers targeting Fortran 2026

https://j3-fortran.org/doc/year/22/22-170.pdf Requirement: fetching atomic operations in DO CONCURRENT

https://j3-fortran.org/doc/year/22/22-169.pdf Fortran asynchronous tasks

https://j3-fortran.org/doc/year/22/22-170.pdf
https://j3-fortran.org/doc/year/22/22-169.pdf

