Benefits of continuing Fortran standardisation
survey: final report

Anton Shterenlikht
Standards Officer, BCS Fortran Specialist Group

14th January 2019

1 Introduction

This survey has been developed by the committee of the BCS Fortran Group to
quantify the value of modern Fortran standards to organisations and individuals.
The Fortran Group wanted to know how newer Fortran standards have increased the
quality of users’ code, cut development costs, increased portability or performance,
or whether users could attach any monetary value to the benefits enabled by modern
Fortran standards.

The Fortran language has been steadily developing since its origins in 1957.
Many people have been working on revising the Fortran specification, resulting in
Fortran 77, 90, 95, 2003, 2008 and 2018 standards. This survey was designed to
find out exactly what benefits newer Fortran standards bring to the community.

The results of the survey will help the Group justify continuing involvement in
Fortran standardisation efforts. The results of the survey will also be shared with
the I1SO Fortran standardisation committee.

The survey opened 30-JUN-2018 and closed on 3-JAN-2019. 427 respond-
ents participated in the survey. All questions were optional, hence the number of
responses varies for different questions. The percentages for each question were
calculated based on the number of responses for that particular question.

For fields where the respondents could enter any text, the responses are given
verbatim, one response per paragraph. Multiple identical responses in such fields
are indicated with numbers in brackets after such responses.

Efforts have been made to preserve the original formatting in the longer re-
sponses.

These are raw results as presented by Google Forms. No analysis of the results
has been done.

2 Have newer Fortran standards brought you any of
the following benefits?

The possible answers to all questions in this section are from 1 to 5, where 1 means
"No cost saving”, and 5 means "Huge cost saving:

1 2 3 4 5

No cost saving Huge cost saving

Cut development costs, e.g. via more powerful language
features

408 responses

150
144 (35.
3%)
100 103 (25.
2%)
50

36 (8.8%)

Cut deployment costs, e.g. via improved portability

406 responses

150

121 (29.

100 8%)

102 (25.
1%)

50

Ability to target new architectures, e.g. parallel computers
and HPC

403 responses

150

100 106 (26.
3%)

50

1 2 3 4 5

Cut debugging costs, e.g. via more stringent rules
discouraging "sloppy' code

411 responses

200

150 151 (36.

7%)

100 108 (26.
3%)

50

39 (9.5%) 34 (8.3%)

Cuts maintenance costs, e.g. with object oriented features

407 responses

150

100

67 (16.5%

50

123 (30.
2%)

69 (17%)

Better code expressiveness, e.g. via free format, long
variable names, whole array operations, etc.

413 responses

300

200

100

18 (4.4%)

8 (1.|9%)

242 (58.
6%)

107 (25.
9%)

38 (9.2%)

2

Better optimised code, e.g. more structured code, easier for
compilers to optimise

407 responses

150
135 (33.
0,
2%) 116 (28.
100 5%)
50

35 (8.6%)

29 (7.1%)
1 2 3 4 5

Improved code modularity

412 responses

200
186 (45.
v)
150 1%)
137 (33.
3%)

100

50

0 23 (56%) 18 (44%)

Better interoperability with other programming languages

413 responses

150
126 (30. 125 (30.
100 5%) 3%)
50
27 (6.5%)
0

Other benefits not mentioned above

51 responses

Improved error handling; improved support for pointers (allowing more flexible data structures); improved
vectorisation hints (do concurrent)

support generic programming, at least support generic containers
Removal of archaic 'gotchas' - level 4

The mentioned huge savings cost are however offset by compiler bugs and workarounds required to make things
actually work.

Allocatable arrays, variable length strings, etc. significantly reduce development time and enhance code reuse
through simpler interfaces.

The benefits of improved Fortran standards can't be equated directly to financial cost/benefit in my organisation,
so the negative answers above do not reflect the true benefit. Also | maintain legacy code and rarely compose
code from scratch so | can't take advantage of the most modern features. Benefits do include improved
interoperability with the operating system, and | expect to write Fortran code to interact with SQL databases in due
course.

The coarray model for parallel programming / HPC without MPI/OpenMP.

Easier to program, in line with modern programming practice.

Ability to return to code months or years later and still understand the syntax and organization — iff some 00
features are not used (OO seriously degrades "returnability").

But for Fortran 2003 and later revisions, Fortran will not be used in my organization.

It is useful to have GPU coding features in some Fortran versions, would be great to have this as standard,
including for non-NVIDIA GPUs.

It's not a benefit, however the standard did pointers all wrong.

Improved code correctness, it can be very difficult if not impossible to determine correctness of old fortran code
for different datatypes etc.

Need compilers to keep up with standards. Often a disconnect between debuggers, compilers and fortran
standard making development difficult without substantial costs for commercial tools or workarounds when
musing multiple machines (i.e there is still poor portability when debugging MPI codes that require use of specific
machines).

Ability to target GPUs with CUDA Fortran and automatic kernel generation

Small improvements such as open(newunit=...), unlimited format descriptor etc. make life a lot easier!
F08/18 could possibly allow for development of new kinds of parallel algorithms

Fortran Coarray is impressive, and | personally believe its development should continue.

Backward compatability gets a score of 4. | can still use math software libraries | developed starting in 1974.
Please keep f77 alive and well!

| use legacy fortran code, and so have not experienced the new standards.

I would like to be able to say that all of the new features implemented by the recent standards have enabled me to
make a quantuum leap in my ability to write to write more modular, more efficient, and more maintainable code but
| can't because off the lack of a compiler that everyone has unrestricted access to that supports all of the current
standard (Fortran 2008) and is bulletproof. | can't tell how useful a new feature is if | don't have access to a
compiler that supports it. This is the biggest issue facing Fortran today. Granted writing a compiler is a very
complicated endeavor but that still is no excuse for the lag between when a standard is released and when the
new features are available in a compiler everyone has access to. I'm afraid we have reached the point where the
language will die not because its inferior to other languages but because the people in charge of defining the
language have no clue how to lead. The standard committee is too inbred with compiler developers who only see
the language from the inside out and lacking in users who know what features they need for their particular
application space. While things like coarrays etc are great ideas, the average user would have preferred having
something like the C++ STL so we don't have to write our own ADTs and containers for things like lists, maps, etc.
that are almost mandatory for modern programming in areas like FEM and CFD. As of today the only two things |
can think of that will save Fortran is for Intel to follow NVIDIA/Portland Groups example and release a community
edition (le free) version of their compiler and for the NVIDIA backed flang project to supplant gfortran as the "open
source" compiler. Just my 2 cents

Flexibility of data sets due to allocated arrays

The built-in integer and floating-point arithmetic system intrinsics.

Protected values for input constants. Definition of INTENT IN/OUT.

Language defined features that previously relied on external libraries are a giant bonus.

Ability to transfer coding paradigms from other languages (python) to compiled programs

The standards are quite good actually. The problem is the lack of implementation in many (especially commercial)
compilers. Especially as a scientist in an HPC environment, where it isn't easy to change compilers, this means that
we are still stuck to F90 + selected F2003 features to ensure portability.

None!

Biggest improvement was the expressiveness

Actually not a benefit, but a real failure in the standardization. There is no standard for the Fortran modules file
format. This is terrible. One has to compile Fortran libraries with all sorts of compilers to be able to link them to
main code compiled with the corresponding compilers. The Fortran standards committee should have adrressed

this horribly lax policy a long time ago. Long overdue.

Some of the above benefits might have been in the standard but took another ten years to be widely available with
compilers.

Running newer code on older clusters is very tricky subject, good example is vasp544
Improved I/0 error checking improves execution robustness.

Using FORTRAN 77 with FORTRAN 2008 is still a nightmare: there is no function for the leading dimensions of an
array.

Large backward compatibility
powerful build system with first-class Fortran support
Allows adding new capabilities while still keeping legacy code working.

We use f90 since it has dynamic array allocation; otherwise we are basically writing f77. We avoid modules and all
other fortran features since then. OpenMP is fine for our parallelization for such codes.

Better-performing array syntax in compilers, which has improved over time

Convinced tool writers that it is not a dead language.

Some Fortran features make it ideal for some kinds of numerical computing. Newer features mostly seem to
enable interoperability with similar new language features, mostly in C, C++. Co-array Fortran still seems not to
have widespread support - unclear if it provides a low enough level or if other language designs will supplant it as a
fourth generation programming language. Cuda Fortran is a very well designed accelerator programming model,
would be nice if something based on this ended up in Fortran for general accelerators.

Honestly, | think Fortran should be retired

lack of compiler supports is the main issue.

Just a general remark: | once read a quote from Gauss, if | remember it correctly, | have never been able to find it
again, about primes. A contemporary of his complained that making progress with the mathematical laws
gouverning prime numbers was difficult because "we lack a good way to notate them". Gauss's answer was that
we need notions, not notations. That is true as much for programming languages as it is for mathematics. We
need to clearly express our ideas, the notation (syntax) is merely a vehicle. Of course a clumsy notation makes it
difficult to clearly express your ideas. In my opinion most of the new features of Fortran make us express our ideas

more clearly.

My experience is that many of the newer Fortran features have actually increased cost, as earlier standards
(77/90) often used in legacy code were much simpler and more reliable and maintainable.

Less necessity to use C for features not implemented in Standard Fortran.
Allow modern code design to still exploit older libraries
Code integrity is improved with the modern standards.

More attractive code: expressing ideas elegantly
More modern look/feel: defending Fortran against "modern” languages

The savings in my case are not so much in cost as in programming time and effort. A benefit not mentioned above
is improved clarity of code for programmers new to the code.

3 Please tick any features which you use, or for
F2018, are planning to use

In this section the features are sorted by popularity. The percentages are rounded
(nearest) to integer values.

3.1 Fortran 95, 408 responses

3.1.1 Pre-set responses

Feature NUM %
do/end do loop 383 94
whole array operations 368 90
implicit none 368 90
dynamic memory allocation 367 90
modules 367 90
free form syntax 365 90
array sections 331 81
module procedures 312 77
exit, cycle 310 76
intrinsic procedures for arrays 289 71
optional arguments 285 70
select case 281 69
allocatable components 271 66
pointers 252 62
generic interfaces 242 59
internal and recursive procedures 241 59
cpu_time 222 54
operator overloading 181 44
null 178 44
parametric intrinsic types 152 37
multibyte characters 63 15

3.1.2 Additional responses
1. WHERE and FORALL constructs are important too.

2. the key nature of F90/95: array operations on nested derived types (object-
based array programming)

3. Standard date and time functions

4. do concurrent, "accessor” pointer-valued functions, g0 descriptor

5. FORALL

10

3.2 F2003, 355 responses

3.2.1 Pre-set responses

Feature NUM %
interoperability with C 256 72
OS: envars, command line , etc. 205 58
inheritance 184 52
dynamic type allocation 181 51
type extension 176 50
type—bound procedures 172 49
polymorphism 164 46
procedure pointers 158 45
flush 151 43
input_unit, output_unit, error_unit 143 40
IEC 60559 floating point exceptions 136 38
stream 10 108 30
parametrised derived types (PDT) 106 30
deferred type parameters 97 27
explicit type in array constructor 95 27
finalisers 82 23
asynchronous 10 63 18
derived type 10 (DTIO) 56 16
control of rounding modes 53 15
volatile 28 8

3.2.2 Additional responses
1. protected attribute, bit manipulation functions
2. ASSOCIATE

3. ASSOCIATE, ABSTRACT types and interfaces, IMPORT, GENERIC binding,
almost all of Fortran 2003 is critical to modern code

4. get_command, command_argument_count, move_alloc

5. increased length for names to 63 characters

[e)]

. Interoperability with C should be mentioned at least twice!!

11

3.3 F2008, 310 responses

3.3.1 Pre-set responses

Feature NUM %
int8, intl6, int32, int64, real32 ... 189 56
64—bit integer 161 48
Bessel and err. func, e.g. BESSEL_JO 127 38
submodules 124 37
do concurrent 121 36
execute_command _line 120 36
c_size_of 110 33
contiguous 108 32
coarrays 4+ coarray intrinsics 106 31
findloc — array searching 106 31
newunit 104 31
bit manipulation func. bitwise comp... 102 30
compiler_version , compiler_options 91 27
block construct 91 27
new complex intrinsics: ACOS, ACOSH... 86 25
storage_size 76 23
HYPOT, NORM2 for 2—norms 75 22
%re, %im shorthands for real and im... 75 22
more complex intrinsics 71 21
initial pointer association 71 21
impure elemental procedures 54 16
atomics 53 16
critical 52 15
locks 48 14
max array rank of 15 41 12

3.3.2 Additional responses

1. intrinsic assignment for class(*) variables

2. Implied shape array, allocatable components of a recursive type (for stack

type of data structures), kind of a DO CONCURRENT index, polymorphic
assignment, pointer functions, MOLD in ALLOCATE, GO edit descriptor, un-
limited format item, recursive |/O, on and on with so-called miscellaneous
enhancements per Modern Fortran Explained.

. Mold=x in allocate statement
. Might use coarrays in the near future.

. error stop in pure procedures. note that | avoid inheritance - | only use type
extension to classify my procedures and their arguments more precisely rather
than relying on a variable name alone.

. error stop

. (The compilers | can use are only beginning to support coarrays in a convenient
way. Our programs are not yet taking advantage of them)

12

8. defining functions in subroutine

9. Much of 2008 is still a little bit too new for released code

3.4 Fortran 2018 (previously known as 2015), 180 responses

3.4.1 Pre-set responses

assumed rank: select rank 83 46%
assumed type 77 43%
improved IEEE floating point support... 75 42%
ISO_Fortran_binding.h, CFl_establish ... 73 41%
C descriptor for assumed shape dummy 66 37%
collectives: co_broadcast, co_max... 48 27%
new atomics: atomic_add, atomic_and... 37 21%
events: post, wait, event_query 34 19%
teams: form team, change team/end te... 33 18%
image failure: failed_images, stoppe... 24 13%

3.4.2 Additional responses
1. All of this is too recent to trust for deployment (2)
2. Not used 2018 Fortran but would like to try in next project.

3. Most of the items in "Removal of deciencies and discrepancies” per John
Reid's "What's New in Fortran 2018", especially enhancements to ERROR
STOP.

4. planning to use parallel-programming support, required features not yet de-
termined

error stop in pure procedures
exceptions

(Very limited support in the compilers | use ...)

® N o o

2018 is much too new to consider using in released code

13

4 Future of the Fortran Language

4.1 If you think Fortran is lacking particular features which
would help you, please detail them here, 150 responses

Templates
generic programming
None

Protected components of derived types (modifiable in the module where they are defined, viewable but not
modifiable elsewhere), for the reasons explained in N2147, page 12, third bullet point. Exception handling.

An in-place version of "reshape’, to allow an array to be addressed as if it had a different shape, but without
causing a memory copy. At the moment | do this in a nasty way by casting to a C pointer and then back to a
differently-shaped Fortran pointer.

A way to pass the lower and upper bounds of an array in and out of subroutines (without having to have the array

"allocatable").

Native support for heterogeneous computing, particularly with regard to using alternative RAM (e.g. HBM or

SSD) and Accelerators; e.g. CUDA Fortran has extra attributes to specify whether arrays live on the "host" or the

"device".

matrix operations

generic programming, generic containers

Some symbolic maths tools/library would be nice, or a latex type print function for existing expressions.

Packages (as in Java) to allow namespace management and "friend" types; type-bound procedures for arrays of

defined types (e.g. as in python/numpy).

multiple inheritance would avoid some present workarounds.
type initialisation procedure (similar to finalisation procedure)
Unsigned integers

Better run-time error trapping

A native or embedded MPI support might be a step forward for Fortran. How about automatic shared CPU/GPU

memory blocks for fast coding and optimized GPU support? Like viewing memory blocks at CPU and GPU with
same arrays.

-inline functions as part of the standard (even if compiled in other third party shared library). This also goes for
derived-types to implement getter and setter functions without penalty.

14

- chaining of functions as is possible in most other languages:

eg.

call A%get_B()%execute()

where "get_B()" is a member function of derived_type instance A that returns a
derived_type instance B, and we don't

need to add boiler plate including the type of B. We also don't need to create a
"copy" of B to do this. So functions should be able to return a value by
reference or pointer, as is possible in C++.

- operator() overloading of derived type (relying on inlining mentioned above)
e.g.

type(LookupTable) :: lookup_table

integer =i

i = lookup_table(row, col)

the operator(row,col) may be an inline statement like:

return array(offset(col) + row)

-compiler independent module standard.

- namespaces to avoid module name clashes.

Generic containers

string handling

Expanded generic programming / polymorphism: currently there is no way to write e.g. a sort function which
takes an array of unknown type and a comparison function and returns the sorted list. Similarly, if a parent type
has a+b overloaded (a,b and a+b are all of type parent), it would be very useful to be able to have a child type
which extend parent inherit a+b such that a,b and a+b are all of type child.

It would be useful if all of the intrinsic features of Fortran could be used with classes. e.g. a(i;j) is a very standard
operation on intrinsic arrays, but there is no way of writing an array-like type which can be sliced using the a(i:j)
syntax.

Lambda functions

Generic programming, structured exceptions handling, unsignef integers (all planned for Fortran 202X

Better string handling. A mature collections library would be good (or bindings to C++ collections would be fine)

exceptions and templates

Handling of strings is poor. Built-in dictionaries would be handy.

15

unsigned integer

1) Generics e.g., ability to compactly compose subprograms that can operate on any type or a set of stated
types; ability to efficiently design containers for data of any type or a set of stated types such as lists, stacks,
maps, queues, etc. 2) Scoped enumerations (reference: C++ or Microsoft .NET), a must for modern code in order
to advance beyond the ordinary named constants; 3) Derived type and 00 enhancements including SEALED
(NON_OVERRIDABLE) classes, MOVE semantics, clear concept of namespaces with a third option in mind other
than PRIVATE/PUBLIC attributes of type components and bound procedures so that everything useful with
respect to extension types.

GPU programming as standard feature

templates, put-with-notify (to a different image)

Facilities for proper generic programming, like parametric types in Julia, or templates in C++.

Generic programming (templates) and namespaces

The software | develop is limited to Fortran 95 for portability reasons; new standards should not get too far in
front of compilers.

bit type
templates

GPU acceleration: the Fortran language is outdated with respect to C/C++, that with OpenCL can be used with
very little effort on heterogeneous hardware.

Fortran's approach to generics requires significant code rewriting for many cases in which the structure of the
code is identical e.g. writing an interface explicitly for all numerical types when constructing an 1/0 routine for

many dimensional matrices.

This is avoided in C++ for example through templating, and in other languages through actual generics. Fortran
still lags behind in requiring the coder to be far too explicit about a great deal of type information.

Try, for example, writing a generic vector type in fortran, that can take arbitrary objects and compare that with
C++ oreven C. It is very difficult to write safe, correct code without repeating it many times or writing your own

(error prone) code-generation program.

Cross platform support for debugging. |.e. windows and linux, command line debuggers can be cumbersome
and are not intuitive.

Something like C++ template feature would have been nice to make the code more compact

Arrays of pointers

16

An efficient way to work with outer products of small (say length 3) vectors
More consistent implementation of compiler support.

A simpler way to approach generic programming

execute_command_line able to return a non-error type character message

generic programming support (templates), exception handling (try-catch), native heterogeneous arrays (e.g.,
arrays of character strings w/ non-uniform length)

F77 was easy to each and could/CAN program anything, but lack of dynamic memory required disc-based
memory algorithms.

Improved string handling, *generic programming* like e.g. Java. Useful datastructures, e.g. linked lists and hash
maps, with implementations of common operations on these.

Coming from Python, Java and C++, | really wish there were a standard library.

templates, better exception handling

Fortran, apart from legacy maintenance, is becoming irrelevant to me. | want to use OO features, but it is so
clunky and verbose in Fortran relative to C++. The big missing features are

a) anything equivalent to C++ templates. Writing a type-generic module often means explicitly coding for each
possible type.

b) defined binary implementations, as in C, for things like binary files, subroutine arguments, etc. Yes, | know that
iso_c_binding helps with this, but still...

c) C-style pointer, and C++-style reference type attributes

d) C++-style const (although parameter is nearly the same apart from (e)) and auto

e) remove the insanity of having to define types before any executable statements. Yes, | know about block, but
frustratingly we could not use it for many years because Intel were too lazy to implement quickly.

f) somehow persuade compiler vendors to actually implement full standards quickly

Support for default argument values for optional arguments
- Better ways of declaring generic procedures

- A better way of setting default values for optional arguments
- Reduced precision reals

17

Generic programming, as widely noted. It would be good if this allowed us to not just avoid 'trivial rewrites' (e.g.
like we do with #include) , but also to write 'high efficiency' code as well. For instance it is often said that the C++
'sort’ can be faster than gsort in C, because the former can inline the comparison operator. | suppose similar
optimizations should be available e.g. for numerical integration libraries. | hope this kind of optimization will be
straightforward in fortran's (future) generic programming.

Furthermore, recently we see people writing template based libraries in C++ that seem like they might be able to
solve the 'hardward portability' issue — i.e. writing code that runs and is reasonably efficient on both GPU and
CPU. This kind of thing seems likely to make inroads to the climate/ocean communities. I'm no expert, but it

looks to be facilitated by the strong generic programming capabilities of c++. I'd like it if future variants of fortran
have this degree of flexibility.

No. Fortran is big enough and risk language bloat. Already problems with compilers taking long time to fully
implement all features of F2008 even though 10 years old. Don't break it.

The main issues | see is the lack of genetics and the lack of interfaces (as in Java).

Subscripting on the fly an array function result

template meta-programming

1. Ability to read strings from files without declaring a "max line length", directory into allocatable character
variables. "character(len=:), allocatable :: line" then "read(fileunit, '(A)")" line.

2. Ability to use allocatable and/or pointer arrays and that the "contiguous" attribute enables SIMD-type
optimization on the related array operations.

Generics, exceptions

proper generic programming (or templates); unsigned integers; standardized ABI; exceptions; built-in unit
testing; ready to use standard library with generic tree, map, list, etc

Generic programming

addition of some sort of template meta-programming would be great

Checking and (explicitly) converting units of measurement. Exception handling. Coroutines and iterators. Generic
programming. Support for containers. | have sixty pages of small things collected from 600 colleagues during

the last half century.

Plotting

18

As | mentioned previously, the biggest thing missing from Fortran is something like the STL with predefined
containers, iterators etc for standard ADTs. Based on my experience looking at a lot of C++ implementations of
FEM and CFD codes, the STL is used more than the full blown templating capability (and full blown OOP). My
preference would be the ADTs implemented as intrinsic types with associated methods

| would like to see the feature implemented in FO8 where the TYPE statement can be used to define intrinsic
types (ie TYPE(Real(REAL64)) etc.) be modfied to define the type just by a KIND parameter (ie.
TYPE(KIND=REAL®64)). This would make parameterized types infinitly more useable. ie. we could then do
something like.

Type :: genericArrays(akind, bkind, blen)

Integer, kind :: akind, bkind

Integer, len :: blen

Type(KIND=akind), ALLOCATABLE :: A(;,’)
Type(KIND=bkind) :: B(blen)

End Type

and makes PDTs closer to templates.

There are a couple of cosmetic changes | would like to make.

The first is to make the CALL keyword optional for referencing subroutines.

This would bring Fortran inline with other langauges for referencing void

procedures. The second thing | would like to see is the restriction of numeric only statement labels removed and
fully alphanumeric labels allowed. |

think this would increase the readability of code that makes extensive use of

labels for format statements and GO TO (which does have its uses for

jumping to an error controller etc.)

ie Write(8, array1D) A
array1D: Format(10F10.4)

Obviously too late for this but | would like to be able to use a POLYMORPHIC attribute on a TYPE definition to
define a polymorphic dummy argument or derived type component instead of CLASS (ie. Type, POLYMORPHIC).
The current use of CLASS is confusing to people coming from other languages. Frankly, | would have never
allowed the word to appear in the language at least in its current form.

Finally, | would like to see the use of assume type and assumed rank dummy arguments expanded beyound
C-interoperability.

19

converting strings to variable names?
inherent memory alignment?

Support of half-precision (FP16) - including intrinsics
better link and support of graphics
More access to system level operations

Parsing the compiled .0 and .mod files somehow to see precisely what changes were applied upon compilation.
Not sure if this is possible. Also, | would appreciate built-in facilities to parse text formats, such as XML or JSON,
that would generate the appropriate derived data type on run time. There ought to be more functionality to
inquire into the allocation of variables usage at run time, say call display_allocated_memory(). This would print
out to the terminal each variable, its allocated rank and sizes, and its memory usage. These memory values could
even be returned as optional outputs, or could be "hidden type-bound procedures" like %re or %im on complex
values (not sure the proper nomenclature for those features). Anyway, something like a %memory_alloc call that
would return a value, say 10e5, whose units are bytes. Just a pipe dream **. And one more thing: if assignment is
made to a variable of class foo from a variable of type foo, the instance of class foo obtains all of the
components and methods of the instance of type foo. When | try this in gfortran, | get errors that | believe exist
because it may be ambiguous if the class is extended; but if the compiler could check to see that no type
extends type foo, then class foo ought to be able to be assigned without err. Maybe I'm misunderstanding the
language facilities here...

C pointers much more helpful that Fortran pointers
no

Interop with other languages

Not really

free & easily accessed libraries of technical methods (numerical recipes and similar) - this is a major advantage
of R, for example, in spite of how slow & obtuse R is

GPU interoperability. Support with new tools such as ML frameworks.

DO syntax consistent with DO CONCURRENT and allowing declaring the loop variable, operators such as +=, f0.x
format descriptor, revisiting formats for improved readibility (maybe giving format strings a special format so
that editors know how to highlight them, while keeping them internally represented as strings. For example, print
"(i0,2x,f20.5)", 10, 12.5 could be changed into print /i0,2x,f20.5/, 10, 12.5 or print format(i0,2x,f20.5), 10, 12.5.
Having formats with embedded strings such as "(i0, 1x, 'has value', 1x, i0)" all colored as character literal is hell.),
being able to declare variables anywhere in the program, removing the hellish implicit save (integer :: i = 3 has
implicitly SAVE attribute if declared in the procedure) that forces one to use two separate lines for declaration
and initialization and introduces hard to find bugs, IMPLICIT NONE should be default (it's not that much job to
paste one IMPLICIT line into old codes or implement a compiler switch for backwards compatibility), force PURE

20

attribute on all functions so that the "function side effects and the evaluation order" discussion can finally be
closed without constraining compiler's optimizing capability. Here | didn't mention two major features from
Fortran survey, that is exceptions and templates, which | agree are the most burning need at the moment, but
also very challenging to implement - so | am afraid it might take a long time before compiler vendors catch up.
Syntax improvements are small things that can be easily done in a couple of months time without rewriting most
of the compiler's code. | believe that Fortran standard committee should strive to keep language as modern as
possible and get rid of old features (so nobody has excuse to use them anymore). Compiler vendors will support
anything up to f77 for a long time so the standarization committee should worry about breaking 40 years old
codes as this will most likely not happen. Compatibility-breaking changes like removing "implicit save" or forcing
"implicit none" can be easily handled by compiler vendors by introducing an adequate switch. | believe the fact
that there are new codes developed with 50 year old obsolete syntax is the main reason why Fortran has the bad
reputation in the progressive part of the scientific community and is dumped in favor of C++ despite it being less
suitable for the job. Fortran's place is to be as easy and trouble-free as Python and as fast as C/C++. | advertise
Fortran to my colleagues as "Code clean, compute fast, save time on debugging". Unfortunately, | see that many
members of the Fortran community are still too lazy to update their programming style and they want to keep old
broken features of the language forever, which clearly restricts introduction of new features and syntax
improvements. | hope that the commitee members do not listen to them and soon Fortran will regain its
dominance!

parallel 10

Generics, macro language, template

Assignment operators (i.e. i += 1 in lieu of i = i + 1), OS identification without preprocessor directives, ideally
another symbol for accessing derived type properties (maybe ->', maybe support *." where it's not ambiguous,
I'm not sure, but % makes for incredibly ugly code).

|l use Matlab a lot, but it is too slow sometimes. | would like Fortran to have a standard library like C++, so | do not
have to write every function by myself. Now | am using Julia now.

Run on JVM

Generics.

Better string manipulation, improved generics or templates

Hash or associative arrays): A("name") = "Fred"

Generics, in order to make function more portable.

clear and well-defined C interoperability, routines that make compiler-independent I/0 with identical results
possible without resorting to C functions, a standardized interface to check which features are available and
correctly implemented in the compiler, some form preprocessor that works better than the currently used C

preprocessor (multi-line support etc.), polymorphism often does not produce code that's fast enough for
production on HPC systems

21

There are enough languages out there that, if | need to do something Fortran can't easily do, I'll just interface to
something else. Fortran's weakness is how much code you have to write yourself as there's no centralised,
efficient means to obtain libraries.

c-style const pointers

| have been tasked to redevelop Fortran applications in other languages and to be honest | can't see much use in
keeping it as a current language. It creates roadblocks because it is so infrequently used now and therefore

difficult to read.

More flexible parametrisation (eg, specifying parameter arrays in a similar manner like DATA statements); now
that you have do concurrent and contiguous, perhaps do vectorise to force vdctorisation?

Proper aliases
PL/I like "on <condition>" and "revert <condition>"

Explicit vectorization of arithmetic operations instead of relying on the compiler for deciding whether
vectorization might useful or not. Also it would be nice to have sorting intrinsics

Framework

Fortran is a dead language and its use should be banned by an act of Parliament

memory allocation attribute (e.g. pinned memory)

luse f77

Fortran module file format must be standardized. It is still compiler-dependent. This is completely against any
concept of code portability and interoperability. This is a long overdue issue never addressed by the Fortran
standard committe.

Specification for very widely used but non-standard features. For example, INTEGER*4 is accepted by every
compiler we know. The standard should say what it means. STRUCTURE-MAP-UNION is supported by several
systems. The standard should comment - how should this be interpreted?

High order functions, functional programming

template

Support from compiler makers.

better object scoping/encapsulation

OTHER (44)

1. Templates

2. Threads. Committee members complain about how OpenMP extends For-
tran and yet does nothing to provide a better alternative. Coarrays and DO
CONCURRENT are *not* reasonable alternatives to threading.

3. A "short" sleep to yield the process. This is useful for MPI functionality in
non-blocking messaging. sleepqq() will do the job for ifort, but microsecond
capability with C's usleep() to the standard would be handy—-millisecond fine
too. This is easy to add for any Fortran with a tiny C routine compiled and
linked in. But, it has to be added.

22

o N o

10.
11.

12.
13.

14.

15.
16.
17.
18.

19.
20.

21.
22.

. High level 1/0 - native interfaces (not subroutines) to HDF5, NetCDF, PNG,

etc.

. Protected attribute in type attributes
. Fortran needs STL as same as C++
. Threading support.

. Overloading the Array-Element Access operator to implement array-like ob-

jects, as in C++.

. better inter-language operation for derived types including pointers and alloc-

atable arrays

No sparse matrices

Even better and more automatic inteorperability with C. Why some ISO_C_BINDING

intrinsic procedures are not PURE?
powerful macros or template system as first citizien in Fortran

My usage of Fortran relies primarily on "old" feature. | do "modern” CS
practices with high-level C4++ and don't see any need to do all this stuff in
Fortran.

I'd like a swap function, e.g. to exchange A and B, A<=>B, or AB = B,A,
or 77

unsigned int , Template class , Standard math library
don't add features. Keep the language stable and simple.
None

| think Fortran has too many features. | think it has lost its appeal and
core purpose of providing simple, unambiguous encoding of mathematical
formulae. By pursuing advanced features that try to compete with modern
OO languages such as C++ and not having a large enough community to
justify industry investment in high-quality implementations of new standards,
Fortran codes lose portability for anything other than features that were part
of F95 and, only recently F2003. | would like to see F2021 be a substantial
feature reduction release.

templates or equivalent (compile time variables)

Information on language features is not lacking per se, but information on
ability of compilers to optimise code would be helpful - at present Fortran 77
produces very fast codes on some compilers which more advanced language
features may hinder on some architectures. It would be good to have more
knowledge on this.

forget old cards and move to stream orientation requiring end of statement ;

Exception handling is the one thing that comes to mind - even if the main
reason is that Fortran is often criticised for not having them

23

23.
24.

25.
26.
27.
28.

29.
30.
31.

32.

33.

34.

35.

36.
37.

38.
39.

40.

Templates

(1) Allowing data members of a class to be accessible by subclasses but not
elsewhere (like 'protected’ in Java). (2) Default values for optional arguments.

List directed reads should stop at the first error so that next record is defined.
Fortran90 compilers introduce bugs with some whole array operations
Chained lists, packing of derived types

More features to manage memory hierarchy and NUMA, to deal with accel-
erators (GPU)

N/A
package management, like maven or npm

It would be great if one in an associate context could refer to things defined
previously in the same associate context. For instance,

associate (a => long_array_name, s => size(a)).

Standard implementations of some standard data types would be very nive,
e.g. linked lists, balanced trees, hash tables

While | realize that this is unlikely to ever happen, Fortran should move
to case-dependence (to *dramatically* improve interoperability with other
languages).

easy -to-use pointers (like C). Flexibility in passing arguments of different
types to procedures. The issue is not lack of features. The issue is the lack
of compiler support and compilers are buggy with new features.

A normally-distributed random number generator would be great, though it's
the kind of feature that might fundamentally be better off implemented by
users.

control over inlining of procedures

Templates or something similar to simplify the writing of generic procedures.
Functional programming features e.g. anonymous functions.

Binary io of unsigned or compressed data. Must use c instead.

Exceptions for error handling, co-array member of a derived type that doesn’t
have to be declared as a co-array (for use with abstract distributed data
structures where a co-array implementation is just one of several versions),
derived types with allocatable components that can be bound to c structs,
a string intrinsic with procedures to manipulate strings, an abstract class for
numerical data types (integer, real , complex) that have generics for standard
numerical operations so | can implement an algorithm once.

1) Dynamic pointer downcast (like dynamic_cast):

24

41.

42.

43.

44

class(base), intent(inout), target:: object
class(derived), pointer:: pd=>NULL()

pd=>object INEW: Dynamic cast in one line
if(associated(pd)) then

DO STUFF WITH pd POINTING TO object AS derived TYPE
else

object IS NOT OF derived TYPE, DO NOTHING

endif

In other words, to replace clumsy SELECT TYPE in simple cases (single case).
That is, above " pd=>object” would be a simple shortcut for clumsy

select type(object)
class is(derived)
pd=>object

class default
pd=>NULL()

end select

P.S. derived extends(base) here.

2) Simultaneous overload/override: Currently, if the base type has a generic
type-bound interface (generic type-bound overload for multiple concrete type-
bound procedures), there is no way to have the same-name generic type-
bound interface in the derived type which would represent the overload of the
overriden type-bound procedures.

Something like:

type base

contains

procedure :: pl=>pbl
procedure :: p2=>pb2
generic:: p=>pbl,pb2
end type base

type, extends(base):: derived
contains

procedure :: pl=>pdl
procedure :: p2=>pd?2
generic:: p=>pdl, pd2

end type derived

Here, pdl overrides pbl, pd2 overrides pb2, but generic overload p cannot be
overriden, although it is properly associated with two overriden procedures.

Operations with NaN, more than one return values of function (similar to
C++ or Python)

Maps, templates as in C++
Case sensitivity

. A robust and flexible pre-processor.

25

45.

46.
47.

48.

49.

4.2

Standardized format for .mod files, guaranteeing portability across different
compiler versions, and compilers.

C++ - FortranOOP mixed programming standardized

Implement the concept of either friend classes or protected member variables
of C++ in FortranOOP

Extend the current support for parameterized data types such that one can
also parameterize a data type in terms of a user-defined data type (in line
with generic programming in C++, a.k.a. templates)

A support library in line with the Standard Template Library (STL) of C+-+
What Fortran compiler(s) are you using? And does it (do

they) support the standard features you want to use? 371
responses

GFortran, Intel 7. fortran, Intel
. Mainly ifort. Supports most fea- 8. gfortran, ifort
tures, but performance is not al- 9. ifort, gfortran, nag - yes

ways as it should be.

10. GNU Fortran, Intel Fortran. They
gfortran, intel fortran, Cray. GNU do not (fu”y or enough) Support
is usually slow on the uptake of generic programming
new fortran features from newer

standards (c.f. co-arrays etc) 11. Intel, Flang, GCC, Cray

Gfortran, ifort, pgi 12. The gfortran compiler

13. gfortran 8; vyes for the most
part (deferred-length characters
not fully implemented).

Intel (most features supported, if
not all), CRAY (most features sup-
ported, if not all), gfortran (many
features supported, but %re and 14. gfortran, ifort
%im missing - really looking for- 15
ward to this, lack of progress in
PR40196 for over 9 years is very 16. NAg
disappointing), NAG (mostly used
as an additional way to check cor-
rectness of code, some features 18. Nag (mostly), Intel (mostly), gfor-
missing), PGl (too many features tran (lacking)

missing, and this limits our devel-
opment choices due to our need to
support OpenACC through it). 20. gfortran, Intel fortran

. gfortran

17. gfortran, good enough

19. ifort, gfortran

Intel, GNU and Portland Group. 21. Intel, Nag, Gfortran, PGI, Oracle,
They are very slow to catch up g95

with the standards, which is par-
ticularly frustrating for easy things
like " do concurrent” and the " con- 23. Intell8+ + gcc7+ - support is usu-
tiguous” attribute. ally good

22. Intel yes (eventually)

26

24.
25.

26.

27.

28.

29.
30.
31.

32.

33.
34.
35.

Various and no

Intel Fortran and GNU Fortran
Compilers. Up to now they are
OK.

gfortran, ifort

GNU(mostly), PGI(mostly), In-
tel(mostly), Cray(mostly)

All compilers tested have bugs pre-
venting me to use some features
that | want to use. Work is re-
quired for all compilers to give
consistent results. Perhaps the
standard is too ambiguous in some
cases. In particular in the case
of finalisation, every compiler calls
final on left-hand-side and right-
hand-side at different moments,
and a different number of times.

ifort, yes
gfortran

Gnu, Intel, Cray, NAG, Portland.
They do not support the latest
standards quickly enough

Intel Visual Fortran. Most, but not
all standard features of interest to
me are supported. It is quite pos-
sible that as new features are ad-
ded we would make use of some of
them.

gfortran and yes
GNU Gfortran - yes.

Gfortran 5.4.0, Nagfor 6207, ifort
17.0.5

None of these compilers supports
the full (up to 2008) standard, and
it is frustrating using trial and er-
ror to find the subset of useful
features that they do all support.
All three claim to support parts
of the standard which they actu-
ally don’t. Among other prob-
lems, gfortran incorrectly handles

27

36.
37.
38.
39.

40.

41.

42,
43,
44,
45,
46.
47

48.
49.

50.
51.
52.
53.
54.
55.

56.

elemental functions on arrays and
scalars, e.g. f(array, g(scalar)) fails
for any elemental functions f and
g; nagfor incorrectly handles im-
plicit re-allocations such as array
= [array, scalar], and Ifort refuses
valid constructor syntax such as
array=[String::] when String is a
user-defined type.

gfortran, flang, openuh
Gfortran
Intel

Intel (most) , gfortran (for Linux).
Intel

GNU, Cray, Intel, PGI. Support for
F2008 and beyond is poor. | don't
need OO features either as there
are better languages for that.

intel ifort largely but | do use oth-
ers

ifort, gfortran, yes
Lahey (old); gfortran
intel fortran

GNU, Intel

gfortran, ifort

Intel Fortran - supports ALL of
Fortran 2003 plus lots of Fortran
2018.

Intel, GCC, PGl

Cray (yes), Intel (most), gfortran
(most), PGI/NVIDIA (not really)

Ifort - yes. Gfortran - mostly.
gfortran

Gfortran. Yes

gfortran, intel

gfortran (gcc), ifort, nagfor, Cray

GCC, PGI, Intel, Cray mostly sup-
port the required features

Cray, Intel, PGl and GNU

57.

58.
59.

60.

61.

62.

63.

64.
65.

66.

67.

68.
69.
70.
71.

intel, pgi, gfortran. We only
use features well-supported by all
three.

ifort, gfortran

GCC, Intel, both OK (though both
buggy sometimes)

Intel Fortran Compiler and Gnu
Fortran Compiler: both support
standard features that | want to
use, but GFortran seems to have
a better support of CAF wrt IFort

gfortran (generally quite good,
takes a very long time for some
features, e.g. only just got sub-
modules)

ifort (generally ok for new stand-
ards, but its code generation is
much more frequently incorrect)

nag (very very standards compli-
ant)

pgi (lags way behind standards)

cray (very hard to test without ac-
cess to supercomputer infrastruc-
ture, but from my understanding
it is generally up to date)

gfortran, Intel, Cray. Need to
have similar features (not partial
standard implementation). De-
bugging large parallel codes need
work, genrally end up with print
statement debugging.

NAG, Intel, gfortran NAG does not
support coarrays om more than
one image.

gfortran, intel
gnu, intel
intel/gnu yes

| use mostly intel fortran for large
pieces of code and occasionally
gfortran for smaller projects. In
our work we've started to use the

28

72.

73.

74.
75.
76.

77.

78.

79.

80.
81.

82.

83.

84.

85.

oop techniques, i.e. F2003 some
6 years ago. Since then ifort has
improved massively with regards
to the support for F2003 - earlier
versions such as v12 were riddled
with bugs. When | started using
oop essentially only ifort had some
of F2003 implemented. | guess
gfortran has improved since then
but | don’t know what the current
status is.

gfortran 8.1 , not full support of
F2008

Sun Solaris short of 2003; gfortran
has most of what | want to use

GNU and Intel
ifort, gfortran yes

Open Watcom F77. Supports F77
with a lot of F90 additions.

PGl (NVIDIA) and Intel, yes for
both

Intel/gfortran/cray - Some but for
a large code features need to be
supported by all.

ifort, fortran
Ifort, gfortran, nagfor. yes.

NAG for diagnosis and testing,
gfortran and ifort for final product.
They support most of features |
use most of the time.

ifort, gfortran: yes. Sun: most.
g95: many
Intel, gnu. Intel support most

desired features. Would have
preferred an LLVM based com-
piler; the return of Lahey/Fujitsu.
The biggest issue is the shrinking
vendor base.

gfortran on both Windows and
Linux. Yes they are fine

gfortran, yes

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

nagfor, gfortran, ifort, pgfortran. 102.

(gfortran, ifort: generally ok; nag-
for: missing support for submod-
ules; pgfortran: too buggy for pro-
duction use)

F77 and F95. Have no need for
any higher level

GCC, iFort

gfortran - yes (although it would
be nice if coarrays were better in-
tegrated, i.e. not having to use
the opencoarray library explicitly).
ifort - yes.

Intel Visual Fortran, NAG Fortran,
GFortran: most features are sup-
ported

Gfortran, Intel Fortran
Intel Visual Fortran

Gfortran/OpenCoarrays and ifort.
Yes, they (will) do support the re-
quired features.

Ifort 17.0.4, Gfortran 6.3.0 both
support the features | currently
use.

gfortran and (decreasingly, be-
cause the performance advantage
is slighter than formerly) ifort

Intel, GNU, Cray. Most features
supported.

gnu, nag
Intel, NAG, gfortran. Not fully

gfortran, intel. Mostly, but poor
support for finalisation

GFortran, Intel Fortran 2013; Yes

gfortran 7, gfortran 8, ifort 2017,
pgfortran 2017. They support
some features, but not all.

29

mostly gfortran, sometimes ifort.

| have tried PGI recently, but it's
support of fortran 2003 seemed
very poor — even my basic test
codes did not run. | use f03 fea-
tures all the time, so this is a deal-
breaker.

A key current limitation is coarray
support

| have had to work-around not-
so-good coarray support in ifort
(critical parts of my code were re-
written in MPI because ifort 18's
coarrays were still not comparably
fast). Also | had to provide altern-
atives to the coarray collectives.

gfortan + opencoarrays seems
quite good for a 'basic but func-
tional' subset of coarrays (e.g.
using allocatable coarrays inside
a module, with typical point-to-
point communication, and collect-
ives).

One thing that does not yet have
good support in gfortran/open-
coarrays is allocatable coarrays in-
side derived types. It seems like
this would be very natural for
many problems. In general, | like
to 'wrap up’ my code inside de-
rived types to keep the high-level
structure simple and easy to gener-
alise. But thus far I've avoided do-
ing this with coarrays due to com-
piler limitations, and I'm aware
that this is making parts of my
code harder to 'cleanly re-use’.

Other

Early experiences with object ori-
ented programming in gfortran
(4.8-ish) made me avoid crucial
elements (e.g. inheritance). Sim-
ilarly, seeing so many issues with
memory leaks / polymorphism
discussed on comp.lang.fortran
makes me cautious about using it.
Thus | tend to be writing 'object-
based’ codes.

103.
104.
105.
106.
107.

108.

109.

110.

111.

112.

113.

114.
115.
116.
117.
118.

119.
120.

121.
122,
123.

gfortran ifort

Gnu, Intel

gfortran

intel gfortran openmp

Intel, gfortran, NAG, PGIl. Good
support for all F95 and 2003.
Slowly adopting 2008.

| use Nag and gfortran. Nag is a
bit behind in terms of features so
we can't use it all the time.

GNU, Intel, GNU still lacking sup-
port/buggy in allocatable charac-
ter strings

gfortran, Intel Fortran. Yes
(F2003).
gfortran and ifort. good support

so far.

mostly GNU Fortran 8 (good sup-
port for new features), but also In-
tel Fortran 17+ (worse support for
new features)

gfortran, intel, cray, | try to stick
to widely supported features.

gfortran,yes— watfor, only some
Gfortran, Intel. Yes

ifort, gfortran

gfortran, intel ifort. +

gfortran and ifort: they both do
not completely and reliably imple-
ment the features that I'd like to
use

Intel, GNU

Intel ifort 17, NAG nagfor 6.2 (still
lacks a few features I'd like to use)

Intel Fortran
ifort, gfortran

90

30

124.
125.
126.
127.

128.
129.
130.

131.
132.
133.
134.
135.
136.
137.

138.
139.
140.
141.
142.

143.
144.
145,
146.

Intel
GFORTRAN, IFORT, PGF90
ifort. Yes.

gfortran - supports most features |
want - parameterized derived types
not fully supported (I think)

g77, gfortran
gfortran, yes

| use gnu fortran (and until re-
cently, Absoft Fortran). As you
can see from my answers, I'm not
a sophisticated user, and make do
with what | have in my Fortran
77/95 world! | would like improved
handling of character strings, but |
suspect that's already in one of the
current updates.

gnu fortran

gfortran-fsf-4.9

£77, g77

gfortran, ifort

Intel Fortran has everything | need
gfortran, ifort

PGl, GCC - they support
everything | need at this time.

Intel, gfortran - yes
gfortran, ifort

gfortran and Intel Fortran
gfortran, f95

PGI, Intel and GCC. Only Intel
supports FINDLOC

Intel Fortran. Yes.
Intel Fortran
gfortran, Absoft

gr7

147.

148.
149.

150.

151.

152.
153.

154.

155.
156.
157.
158.
159.
160.

161.

162.
163.

164.

165.

166.
167.

168.

169

gfortran - missing further interop-
erability with C

intel
gfortran and FTN95

gfortran supports most of what I'm
interested in, except submodules
and error stop in pure procedures.

gfortran, ifort; support is okay for
the most part

Intel, gcc
gfortran

Cray, GNU, Intel mostly support.
PGI, XL, NEC still rather abysmal

gfortran and ifort, yes for both
Lahey, Absoft, Intel, gfortran.
Intel

gfortran

Ifort and gfortran

GNU

intel (supports all features), gnu
(supports most features)

Intel, PGI, GNU, Cray
Intel

gfortran (yes/no), Intel Fortran
(ves)

ifort and gfortran. ifort is slightly
better in this matter but seems to
have more bugs in new Fortran fea-
tures.

Intel
intel
ifort, yes

Intel and Lahey, if | update

31

170.

171.

172.

173.

174.

175.
176.
177.
178.

179.
180.
181.
182.
183.

184.
185.
186.
187.

188.

189.
190.

gfortran (GNU), ifort (Intel),
pgf90 (Portland), nagfort (oc-
caisionally)

ifort 18, gfortran

I am using GCC, it only has very
limited intrinsic functions

Intel visual fortran

Intel and PGI. They supports most

of the features what | want.
Intel Fortran Compiler

Intel Fortran

Intel - gfortran

Intel and gfortran. Most but not
all.

Intel mostly

ifort and gfortran

Intel Fortran, yes

gfortran, mostly does what | need

| typically have Intel and some-
times gnu.

gfortran
GNU , Intel, PGl and Flang
gfortran 7

gfortran. Standard features | use
are supported

Plato 95 and Microsoft Visual Stu-
dio with Fortran 2018. Yes, they
support the standards | want to
use.

gfortran, g95, intel

Intel, PGI, Cray, IBM, Gnu. Of
these, Intel and Gnu seem to have
the most robust support for F2008.
In principal | think they all support
the features | want but in practice
there are bugs...

191.

192.
193.
194.

195.

196.
197.
198.
199.

200.
201.
202.
203.

204.
205.
206.
207.

208.
209.
210.

GFortran (supports most new fea-
tures), PGl doesn't support Coar-
ray which is a major issue!

gnu
Gfortran, yes

gfortran (most features, but the
available versions on HPC clusters
are often very old), ifort (many
features, but often buggy imple-
mentations), xIf (many features,
but

gfortran and ifort. Their current
versions support everything |'ve
tried to use, but the versions in-
stalled on scientific clusters barely
support F2008 so I've had to re-
move some of those features from
my code.

PGl
gfortran 5.4.0, ifort 2012 vintage
gcc, intel

gnu, intel. nag for testing and de-
bugging. yes, they do.

Intel Fortran Compiler. Yes.
gfortran
gfortran and ifort

GNU Fortran 7, Intel Fortran 14,
PGI Fortran 13

gfortran, intel
gfortran, ifort
Intel, Gnu (does not), Pgi

gfortran, ifort — both approach the
support of the most useful features
of 2008

gcc 4.8 to 7, intel 17; yes
Gfortran,nagfor,ifort,g95

Portland, Intel, gfortran

32

211.
212.

213.

214.
215.

216.

217.
218.

219.

220.
221.
222.
223.
224.
225,

226.

nagfor, ifort, gfortran

Intel, Sun, gfortran, flang, Cray,
PGIl, NAG. Some are lacking sup-
port for 2003/2008 features, pre-
venting adoption of selected newer
features for reasons of portability.

gnu, intel, cray: yes they support
all | need

gfotran

| am learning fortran IV for use in
pdp-8 emulation. The algebraic
context is quite helpful. Fortran
IV has relatively few features. A
more free, choose-your-code sys-
tem would make fortran popular
and accessible. From an entry
standpoint such a platform would
create engineering access to com-
petative computer programming.

PGI, XLF, gfortran, Cray — none
support all

| stopped using it in 1982

Cray Compiler (near support);
GCC (near support); XL Fortran
(near support)

Cray, PGI, Gnu, Intel. They all
have bugs in some of the F2003
features we want to use. For some
features there are workarounds re-
quired to get them to work.

Gfortran, ifort, nagfor
gfortran

77

F77

Gfortran, Intel, PGI

gfortran, ifort, pgfortran, SunStu-
dio, g95, CVF, FTN95: All ex-
cept g95 support everything we
currently need for most applica-
tions.

GNU, Intel

227.

228.
229.
230.
231.
232.
233.
234.

235.
236.
237.
238.
239.

240.
241.

242.
243.

244.

245.

246.

Gfortran mostly. It still needs full
compatibility with coarrays.

GNU Fortran

Intel, gfortran, pgi, craympi
ifort

gfortran. No

intel and gnu and yes

ifort, gfortran

IFORT, if you can afford the new-
est compiler there is no issue

gfortran, nagfor, ifort (yes they do)
gfortran, yes

gfortran

gfortran and NaG compiler

gfortran, ifort, pgi, cray, IBM. All
support all core features that we
use, but we do not try to use fea-
tures not supported in all these
compilers

gfortran

Intel and GCC. Both support all of
the Fortran 2008+ features | use.

gfortran

Intel ifort, Gnu gfortran, but some-
times Cray's Fortran. Cray's com-
piler is somewhat older now as is
the Cray machine used recently, a
few minor problems fixed by re-
verting back, e.g. don't equival-
ence to a SEQUENCE struct. The
essential "newer” features were
fine on all 3, namely allocatable ar-
rays and structures.

gnu, ifort. Yes.

Intel Fortran 11. Looking at gFor-
tran to move beyond F95.

PGI, Intel, Cray

33

247.

248.
249.
250.

251.
252.

253.

254.
255.
256.
257.
258.

259.
260.
261.
262.
263.

264.
265.
266.
267.
268.
269.

Using Intel, NAG, and gfortran.
The commercial compilers support
most of the standard features |
want to use.

Intel fortran - yes
Intel

Ifort, gfortran. | don't really know
if they support what | use. ['ve
been programming in C for my job
since most folks prefer that.

Gfortran and it does

gfortran (does not support), Intel
ifort (partial support)

gfortran, ifort. Yes, except coar-
rays.

intel, gfortran, pgi, xIf

gfortran, flang, g77

g++, xIf, ifort

Intel and fortran; mostly

ifort; gfortran; nag - main prob-
lem relates to lack of portability of
.mod file

gfortran (Is OK)

gfortran, ifort
gfortran and Intel fortran - Yes
gfortran, intel

gfortran, ifort ... no they do not
have powerful macros

Intel, Absoft

ifort, gfortran, flang
GNU, Lahey

Intel Fortran, yes
Intel

Intel, GNU

270.

271.
272.
273.
274.
275.
276.
277.

278.
279.
280.
281.

282.
283.
284.

285.

286.

287.
288.
289.
290.
291.
292.

293.

| use gfortran, and it seems to have
most of the features | need. The
only exceptions have been external
math libraries that | have to wrap
in a C function.

Intel

gfortran, ifort

gec/gfortran

Intel, PGI, GNU

Intel Visual Fortran XE 2013
ifort, gfortran

gfortran, It seems to provide for
my needs and it is free!

Intel
Gnu
gfortran (yes)

intel fortran , gnu fortran , PGl for-
tran. Yes, they have.

gfortran, mostly. yes.
gr7, g95

Intel, PGI and some g95. Intel and
PGI support all the features | use.

Mainly Nec Fortran Compiler. It's
behind in adoption of newer stand-
ards.

GNU Fortran and Intel Fortran
most features | need are supported

gfortran; yes.

gfortran and ifort
gfortran

Intel, Gnu, Cray, Flang
fortran, mostly

gfortran, Intel Fortran, PGl, flang,
dragonegg

gfortran, mostly

34

294.
295.
296.
297.

298.
299.
300.
301.

302.
303.
304.

305.

306.
307.

308.

309.
310.
311.

312.
313.

intel and PGI
Intel, gnu, nag
Intel, PGI(Nvidia)

Intel Fortran, gfortran - coarrays
are the one feature that | dearly
want to get more acquainted with
in a convenient way. Open Coar-
rays is definitely going to help.

Intel composer 2018. Yes.
Gfortran

gce, Intel

intel, gnu, nag, pgi. Most have rel-

atively good Fortran 2003 support,
but pgi support is buggy.

Absoft, Intel, Gfortran
Gfortran, ifort, xIf. They all do

gfortran, Nag, Intel. Needing to
support these (and others such as
PGI) means only using the com-
mon denominator of bug-free fea-
tures which severely limits the For-
tran 2008 features we can use.

IBM XLF, gfort etc.
features | need.

| have the

Ifort Cray

Intel Fortan, G95, gfortran, HP
Fortran, g77

gnu fortran 7, Intel Fortran. Not
all features supported.

ifort, gfortran
intel and gnu

Intel Fortran Compiler (ifort),
GNU Fortran compiler (gfortran).
Generally everything is supported
promptly in ifort but takes a little
while for gfortran to catch up.

GNU Fortran

intel gnu pgi none support the full
set of features in the same way.

314.
315.
316.

317.

318.
319.
320.
321.

322.
323.
324.

325.

326.
327.
328.
329.
330.
331.

332.

333.
334.

ifort
gfortran, ifort, xIf, ...

ifort and to lesser extent gfortran
- both ok in terms of standards
support (but older versions with
incomplete standards support are
still in use, sometimes hindering
adoption of our new code)

«If/IBM, ifort/INTEL,
tran/GNU, pgi/PORTLAND

GCC, Intel, PGI

gfor-

gfortran, portland group, yes
gfortran

Gce and Intel. Yes they support
everything we need

N/A
gfortran, yes

GNU & Intel. They claim to sup-
port for example procedure point-
ers, but both exhibit ICE and in-
valid runtime code on edge cases.

GFortran and IFort. At least one
does not support %re and %im. At
least one does not support hyper-
bolic functions (atanh etc).

GCC gfortran, Intel

Intel Fortran, gfortran, pgi
Intel, GFortran

GNU, IBM and Intel compilers.
Intel; yes

gnu, intel, nag, pgi if absolutely
force to

Intel, GNU, PGI, IBM. They do
not always support all the features
| would want to use

GCC, Intel

gfortran; yes

35

335.

336.
337.
338.
339.

340.
341.
342.
343.
344.

345.

346.

347.
348.
349.
350.
351.
352.
353.
354.
355.
356.

gfortran, nagfor, ifort. They all
support the features | use.

gfortran ifort
gee (gfortran)
gcc, pgi

Gfortran, Intel and PGI. No they
don't.

gfortran ifort
gfortran
gfortran not all
Intel18

intel fortran 2018, absoft pro for-
tran 2018

gfortran: I'm a minor contributor
to one project that distributes bin-
aries of 7.2 for consistent results
across systems. Earlier versions
don't support enough of the new
features. My personal work tends
not to use many new Fortran fea-
tures so I've been fine with versions
as old as 4.8 (3-5 years old).

The thread-safe random number
generation (version 7 on) will be
critical in planned development,
though.

Intel, GFortran; yes
gfortran, intel, pgi
Intel Fortran

PGI Fortran

GNU Fortran
Oracle Fortran
PathScale Fortran
Intel 18.0, gcc 7.2.0
Gnu, Intel

Intel16.0 Intel 18.0 Gee/7.2.0

357.

intel, xIf, gfortran, partially (but all
slightly different)

365.

gfortran (planning also to use PGI
Fortran)

358. Intel 366. Intel, gfortran
359. GNU, Intel. They support them. 367. Gfortran
360. Gfortran, yes 368. gfortran 6.4,mostly

361. gfortran - supports what | use and 369. gfortran
features | want to start using, but '
haven't gotten around to yet 370. gfortran, ifort (but we do not use

362.

363.
364.

pgi - In theory is supports what |
use, but very buggy and requires
lots of workarounds- especially for
object-oriented features.

cray - Same as pgi above

gce/8.1.04, Intel 18+, IBM XL
16.1.14+: They do mostly, some-
times buggy

371.

the latest features as our user base
is very heterogeneous and compiler
versions in use might not support
them)

GNU and INTEL. They do not
actually support all standard fea-
tures we want to use. Indeed, fra-
gile/partial, and/or late support of
some standard features is awful.

Would you like to know more about the work of the Fortran standards
committee? If you answer yes, give your name and email so that we can
get in touch. In return you will be sent an email outlining how you can
best engage with the standard-making process.

374 responses

® Yes
® No

5 About you

Finally some questions about you

Select the industries that apply to you:

418 responses

Academic 281 (67.2%)

Research 311 (74.4%)

Start-up

Small and Medium-sized

59 (14.1%
Enterprise (SME) (%)

Large corporation 62 (14.8%)

0 100 200 300 400

What option(s) best describes your role?

417 responses

Computational scientist 313 (75.1%)

Computer scientist 70 (16.8%)

Parallel programmer 154 (36.9%)

HPC systems administrator 24 (5.8%)

HPC code optimiser 94 (22.5%)

Application developer 178 (42.7%)

0 100 200 300 400

37

5.1 Which country are you based in? 384 responses

NUM % Country
120 31 United States
117 30 United Kingdom
27 7 Germany
17 4 Netherlands
14 4 France
8 2 Canada
7 2 ltaly
6 2 Spain
5 1 Brazil , Russia, Sweden
4 1 Australia, New Zealand
3 <1 Argentina, Belgium, China, India, Norway, Poland
2 <1 Denmark, The Gambia, Greece, Switzerland, Vietnam
1 <1 Algeria, Ashmore and Cartier Islands, Cayman Islands,
Chile , Czech Republic, Estonia, Finland, lran, lIreland,

Luxembourg, Malaysia, Romania, Saudi
South Africa, Turkey, Ukraine
384 Total

38

Arabia, Slovenia,

	Introduction
	Have newer Fortran standards brought you any of the following benefits?
	Please tick any features which you use, or for F2018, are planning to use
	Fortran 95, 408 responses
	Pre-set responses
	Additional responses

	F2003, 355 responses
	Pre-set responses
	Additional responses

	F2008, 310 responses
	Pre-set responses
	Additional responses

	Fortran 2018 (previously known as 2015), 180 responses
	Pre-set responses
	Additional responses

	Future of the Fortran Language
	If you think Fortran is lacking particular features which would help you, please detail them here, 150 responses
	What Fortran compiler(s) are you using? And does it (do they) support the standard features you want to use? 371 responses

	About you
	Which country are you based in? 384 responses

