
Benefits of continuing Fortran standardisation

survey: final report

Anton Shterenlikht
Standards Officer, BCS Fortran Specialist Group

14th January 2019

1 Introduction

This survey has been developed by the committee of the BCS Fortran Group to
quantify the value of modern Fortran standards to organisations and individuals.
The Fortran Group wanted to know how newer Fortran standards have increased the
quality of users’ code, cut development costs, increased portability or performance,
or whether users could attach any monetary value to the benefits enabled by modern
Fortran standards.

The Fortran language has been steadily developing since its origins in 1957.
Many people have been working on revising the Fortran specification, resulting in
Fortran 77, 90, 95, 2003, 2008 and 2018 standards. This survey was designed to
find out exactly what benefits newer Fortran standards bring to the community.

The results of the survey will help the Group justify continuing involvement in
Fortran standardisation efforts. The results of the survey will also be shared with
the ISO Fortran standardisation committee.

The survey opened 30-JUN-2018 and closed on 3-JAN-2019. 427 respond-
ents participated in the survey. All questions were optional, hence the number of
responses varies for different questions. The percentages for each question were
calculated based on the number of responses for that particular question.

For fields where the respondents could enter any text, the responses are given
verbatim, one response per paragraph. Multiple identical responses in such fields
are indicated with numbers in brackets after such responses.

Efforts have been made to preserve the original formatting in the longer re-
sponses.

These are raw results as presented by Google Forms. No analysis of the results
has been done.

1

2 Have newer Fortran standards brought you any of
the following benefits?

The possible answers to all questions in this section are from 1 to 5, where 1 means
”No cost saving”, and 5 means ”Huge cost saving”:

2

3

4

5

6

7

8

9

3 Please tick any features which you use, or for
F2018, are planning to use

In this section the features are sorted by popularity. The percentages are rounded
(nearest) to integer values.

3.1 Fortran 95, 408 responses

3.1.1 Pre-set responses

F e a t u r e NUM %

do/ end do l o o p 383 94
whole a r r a y o p e r a t i o n s 368 90
i m p l i c i t none 368 90
dynamic memory a l l o c a t i o n 367 90
modules 367 90
f r e e form s y n t a x 365 90
a r r a y s e c t i o n s 331 81
module p r o c e d u r e s 312 77
e x i t , c y c l e 310 76
i n t r i n s i c p r o c e d u r e s f o r a r r a y s 289 71
o p t i o n a l arguments 285 70
s e l e c t c a s e 281 69
a l l o c a t a b l e components 271 66
p o i n t e r s 252 62
g e n e r i c i n t e r f a c e s 242 59
i n t e r n a l and r e c u r s i v e p r o c e d u r e s 241 59
c p u t i m e 222 54
o p e r a t o r o v e r l o a d i n g 181 44
n u l l 178 44
p a r a m e t r i c i n t r i n s i c t y p e s 152 37
m u l t i b y t e c h a r a c t e r s 63 15

3.1.2 Additional responses

1. WHERE and FORALL constructs are important too.

2. the key nature of F90/95: array operations on nested derived types (object-
based array programming)

3. Standard date and time functions

4. do concurrent, ”accessor” pointer-valued functions, g0 descriptor

5. FORALL

10

3.2 F2003, 355 responses

3.2.1 Pre-set responses

F e a t u r e NUM %

i n t e r o p e r a b i l i t y w i t h C 256 72
OS : e n v a r s , command l i n e , e t c . 205 58
i n h e r i t a n c e 184 52
dynamic t y p e a l l o c a t i o n 181 51
t y p e e x t e n s i o n 176 50
type−bound p r o c e d u r e s 172 49
polymorphism 164 46
p r o c e d u r e p o i n t e r s 158 45
f l u s h 151 43
i n p u t u n i t , o u t p u t u n i t , e r r o r u n i t 143 40
IEC 60559 f l o a t i n g p o i n t e x c e p t i o n s 136 38
st ream IO 108 30
p a r a m e t r i s e d d e r i v e d t y p e s (PDT) 106 30
d e f e r r e d t y p e p a r a m e t e r s 97 27
e x p l i c i t t y p e i n a r r a y c o n s t r u c t o r 95 27
f i n a l i s e r s 82 23
a s y n c h r o n o u s IO 63 18
d e r i v e d t y p e IO (DTIO) 56 16
c o n t r o l o f r o u n d i n g modes 53 15
v o l a t i l e 28 8

3.2.2 Additional responses

1. protected attribute, bit manipulation functions

2. ASSOCIATE

3. ASSOCIATE, ABSTRACT types and interfaces, IMPORT, GENERIC binding,
almost all of Fortran 2003 is critical to modern code

4. get command, command argument count, move alloc

5. increased length for names to 63 characters

6. Interoperability with C should be mentioned at least twice!!

11

3.3 F2008, 310 responses

3.3.1 Pre-set responses

F e a t u r e NUM %

i n t 8 , i n t 1 6 , i n t 3 2 , i n t 6 4 , r e a l 3 2 . . . 189 56
64− b i t i n t e g e r 161 48
B e s s e l and e r r . func , e . g . BESSEL J0 127 38
submodules 124 37
do c o n c u r r e n t 121 36
e x e c u t e c o m m a n d l i n e 120 36
c s i z e o f 110 33
c o n t i g u o u s 108 32
c o a r r a y s + c o a r r a y i n t r i n s i c s 106 31
f i n d l o c − a r r a y s e a r c h i n g 106 31
newuni t 104 31
b i t m a n i p u l a t i o n f u n c . b i t w i s e comp . . . 102 30
c o m p i l e r v e r s i o n , c o m p i l e r o p t i o n s 91 27
b l o c k c o n s t r u c t 91 27
new complex i n t r i n s i c s : ACOS, ACOSH . . . 86 25
s t o r a g e s i z e 76 23

HYPOT, NORM2 f o r 2−norms 75 22
%re , %im s h o r t h a n d s f o r r e a l and im . . . 75 22
more complex i n t r i n s i c s 71 21
i n i t i a l p o i n t e r a s s o c i a t i o n 71 21
impure e l e m e n t a l p r o c e d u r e s 54 16
a t o m i c s 53 16
c r i t i c a l 52 15
l o c k s 48 14
max a r r a y rank o f 15 41 12

3.3.2 Additional responses

1. intrinsic assignment for class(*) variables

2. Implied shape array, allocatable components of a recursive type (for stack
type of data structures), kind of a DO CONCURRENT index, polymorphic
assignment, pointer functions, MOLD in ALLOCATE, G0 edit descriptor, un-
limited format item, recursive I/O, on and on with so-called miscellaneous
enhancements per Modern Fortran Explained.

3. Mold=x in allocate statement

4. Might use coarrays in the near future.

5. error stop in pure procedures. note that I avoid inheritance - I only use type
extension to classify my procedures and their arguments more precisely rather
than relying on a variable name alone.

6. error stop

7. (The compilers I can use are only beginning to support coarrays in a convenient
way. Our programs are not yet taking advantage of them)

12

8. defining functions in subroutine

9. Much of 2008 is still a little bit too new for released code

3.4 Fortran 2018 (previously known as 2015), 180 responses

3.4.1 Pre-set responses

assumed rank : s e l e c t rank 83 46%
assumed t y p e 77 43%
improved IEEE f l o a t i n g p o i n t s u p p o r t . . . 75 42%
I S O F o r t r a n b i n d i n g . h , C F I e s t a b l i s h . . . 73 41%
C d e s c r i p t o r f o r assumed shape dummy 66 37%
c o l l e c t i v e s : c o b r o a d c a s t , co max . . . 48 27%
new a t o m i c s : atomic add , atomic and . . . 37 21%
e v e n t s : post , wait , e v e n t q u e r y 34 19%
teams : form team , change team/ end t e . . . 33 18%
image f a i l u r e : f a i l e d i m a g e s , s t o p p e . . . 24 13%

3.4.2 Additional responses

1. All of this is too recent to trust for deployment (2)

2. Not used 2018 Fortran but would like to try in next project.

3. Most of the items in ”Removal of deciencies and discrepancies” per John
Reid’s ”What’s New in Fortran 2018”, especially enhancements to ERROR
STOP.

4. planning to use parallel-programming support, required features not yet de-
termined

5. error stop in pure procedures

6. exceptions

7. (Very limited support in the compilers I use ...)

8. 2018 is much too new to consider using in released code

13

4 Future of the Fortran Language

4.1 If you think Fortran is lacking particular features which
would help you, please detail them here, 150 responses

14

15

16

17

18

19

20

21

1. Templates

2. Threads. Committee members complain about how OpenMP extends For-
tran and yet does nothing to provide a better alternative. Coarrays and DO
CONCURRENT are *not* reasonable alternatives to threading.

3. A ”short” sleep to yield the process. This is useful for MPI functionality in
non-blocking messaging. sleepqq() will do the job for ifort, but microsecond
capability with C’s usleep() to the standard would be handy–millisecond fine
too. This is easy to add for any Fortran with a tiny C routine compiled and
linked in. But, it has to be added.

22

4. High level I/O - native interfaces (not subroutines) to HDF5, NetCDF, PNG,
etc.

5. Protected attribute in type attributes

6. Fortran needs STL as same as C++

7. Threading support.

8. Overloading the Array-Element Access operator to implement array-like ob-
jects, as in C++.

9. better inter-language operation for derived types including pointers and alloc-
atable arrays

10. No sparse matrices

11. Even better and more automatic inteorperability with C. Why some ISO C BINDING
intrinsic procedures are not PURE?

12. powerful macros or template system as first citizien in Fortran

13. My usage of Fortran relies primarily on ”old” feature. I do ”modern” CS
practices with high-level C++ and don’t see any need to do all this stuff in
Fortran.

14. I’d like a swap function, e.g. to exchange A and B, A<=>B, or A,B = B,A,
or ??

15. unsigned int , Template class , Standard math library

16. don’t add features. Keep the language stable and simple.

17. None

18. I think Fortran has too many features. I think it has lost its appeal and
core purpose of providing simple, unambiguous encoding of mathematical
formulae. By pursuing advanced features that try to compete with modern
OO languages such as C++ and not having a large enough community to
justify industry investment in high-quality implementations of new standards,
Fortran codes lose portability for anything other than features that were part
of F95 and, only recently F2003. I would like to see F2021 be a substantial
feature reduction release.

19. templates or equivalent (compile time variables)

20. Information on language features is not lacking per se, but information on
ability of compilers to optimise code would be helpful - at present Fortran 77
produces very fast codes on some compilers which more advanced language
features may hinder on some architectures. It would be good to have more
knowledge on this.

21. forget old cards and move to stream orientation requiring end of statement ;

22. Exception handling is the one thing that comes to mind - even if the main
reason is that Fortran is often criticised for not having them

23

23. Templates

24. (1) Allowing data members of a class to be accessible by subclasses but not
elsewhere (like ’protected’ in Java). (2) Default values for optional arguments.

25. List directed reads should stop at the first error so that next record is defined.

26. Fortran90 compilers introduce bugs with some whole array operations

27. Chained lists, packing of derived types

28. More features to manage memory hierarchy and NUMA, to deal with accel-
erators (GPU)

29. N/A

30. package management, like maven or npm

31. It would be great if one in an associate context could refer to things defined
previously in the same associate context. For instance,

associate (a => long array name, s => size(a)).

32. Standard implementations of some standard data types would be very nive,
e.g. linked lists, balanced trees, hash tables

33. While I realize that this is unlikely to ever happen, Fortran should move
to case-dependence (to *dramatically* improve interoperability with other
languages).

34. easy -to-use pointers (like C). Flexibility in passing arguments of different
types to procedures. The issue is not lack of features. The issue is the lack
of compiler support and compilers are buggy with new features.

35. A normally-distributed random number generator would be great, though it’s
the kind of feature that might fundamentally be better off implemented by
users.

36. control over inlining of procedures

37. Templates or something similar to simplify the writing of generic procedures.
Functional programming features e.g. anonymous functions.

38. Binary io of unsigned or compressed data. Must use c instead.

39. Exceptions for error handling, co-array member of a derived type that doesn’t
have to be declared as a co-array (for use with abstract distributed data
structures where a co-array implementation is just one of several versions),
derived types with allocatable components that can be bound to c structs,
a string intrinsic with procedures to manipulate strings, an abstract class for
numerical data types (integer, real , complex) that have generics for standard
numerical operations so I can implement an algorithm once.

40. 1) Dynamic pointer downcast (like dynamic cast):

24

c l a s s (base) , i n t e n t (i n o u t) , t a r g e t : : o b j e c t
c l a s s (d e r i v e d) , p o i n t e r : : pd=>NULL ()
pd=>o b j e c t !NEW: Dynamic c a s t i n one l i n e
i f (a s s o c i a t e d (pd)) then

DO STUFF WITH pd POINTING TO o b j e c t AS d e r i v e d TYPE
e l s e
o b j e c t I S NOT OF d e r i v e d TYPE, DO NOTHING
e n d i f

In other words, to replace clumsy SELECT TYPE in simple cases (single case).
That is, above ”pd=>object” would be a simple shortcut for clumsy

s e l e c t t y p e (o b j e c t)
c l a s s i s (d e r i v e d)
pd=>o b j e c t
c l a s s d e f a u l t
pd=>NULL ()
end s e l e c t

P.S. derived extends(base) here.

2) Simultaneous overload/override: Currently, if the base type has a generic
type-bound interface (generic type-bound overload for multiple concrete type-
bound procedures), there is no way to have the same-name generic type-
bound interface in the derived type which would represent the overload of the
overriden type-bound procedures.

Something like:

t y p e base
c o n t a i n s
p r o c e d u r e : : p1=>pb1
p r o c e d u r e : : p2=>pb2
g e n e r i c : : p=>pb1 , pb2
end t y p e base

type , e x t e n d s (base) : : d e r i v e d
c o n t a i n s
p r o c e d u r e : : p1=>pd1
p r o c e d u r e : : p2=>pd2
g e n e r i c : : p=>pd1 , pd2
end t y p e d e r i v e d

Here, pd1 overrides pb1, pd2 overrides pb2, but generic overload p cannot be
overriden, although it is properly associated with two overriden procedures.

41. Operations with NaN, more than one return values of function (similar to
C++ or Python)

42. Maps, templates as in C++

43. Case sensitivity

44. A robust and flexible pre-processor.

25

45. Standardized format for .mod files, guaranteeing portability across different
compiler versions, and compilers.

46. C++ - FortranOOP mixed programming standardized

47. Implement the concept of either friend classes or protected member variables
of C++ in FortranOOP

48. Extend the current support for parameterized data types such that one can
also parameterize a data type in terms of a user-defined data type (in line
with generic programming in C++, a.k.a. templates)

49. A support library in line with the Standard Template Library (STL) of C++

4.2 What Fortran compiler(s) are you using? And does it (do
they) support the standard features you want to use? 371
responses

1. GFortran, Intel

2. Mainly ifort. Supports most fea-
tures, but performance is not al-
ways as it should be.

3. gfortran, intel fortran, cray. GNU
is usually slow on the uptake of
new fortran features from newer
standards (c.f. co-arrays etc)

4. Gfortran, ifort, pgi

5. Intel (most features supported, if
not all), CRAY (most features sup-
ported, if not all), gfortran (many
features supported, but %re and
%im missing - really looking for-
ward to this, lack of progress in
PR40196 for over 9 years is very
disappointing), NAG (mostly used
as an additional way to check cor-
rectness of code, some features
missing), PGI (too many features
missing, and this limits our devel-
opment choices due to our need to
support OpenACC through it).

6. Intel, GNU and Portland Group.
They are very slow to catch up
with the standards, which is par-
ticularly frustrating for easy things
like ”do concurrent” and the ”con-
tiguous” attribute.

7. fortran, Intel

8. gfortran, ifort

9. ifort, gfortran, nag - yes

10. GNU Fortran, Intel Fortran. They
do not (fully or enough) support
generic programming

11. Intel, Flang, GCC, Cray

12. The gfortran compiler

13. gfortran 8; yes for the most
part (deferred-length characters
not fully implemented).

14. gfortran, ifort

15. gfortran

16. NAg

17. gfortran, good enough

18. Nag (mostly), Intel (mostly), gfor-
tran (lacking)

19. ifort, gfortran

20. gfortran, Intel fortran

21. Intel, Nag, Gfortran, PGI, Oracle,
g95

22. Intel yes (eventually)

23. Intel18+ + gcc7+ - support is usu-
ally good

26

24. Various and no

25. Intel Fortran and GNU Fortran
Compilers. Up to now they are
OK.

26. gfortran, ifort

27. GNU(mostly), PGI(mostly), In-
tel(mostly), Cray(mostly)

28. All compilers tested have bugs pre-
venting me to use some features
that I want to use. Work is re-
quired for all compilers to give
consistent results. Perhaps the
standard is too ambiguous in some
cases. In particular in the case
of finalisation, every compiler calls
final on left-hand-side and right-
hand-side at different moments,
and a different number of times.

29. ifort, yes

30. gfortran

31. Gnu, Intel, Cray, NAG, Portland.
They do not support the latest
standards quickly enough

32. Intel Visual Fortran. Most, but not
all standard features of interest to
me are supported. It is quite pos-
sible that as new features are ad-
ded we would make use of some of
them.

33. gfortran and yes

34. GNU Gfortran - yes.

35. Gfortran 5.4.0, Nagfor 6207, ifort
17.0.5

None of these compilers supports
the full (up to 2008) standard, and
it is frustrating using trial and er-
ror to find the subset of useful
features that they do all support.
All three claim to support parts
of the standard which they actu-
ally don’t. Among other prob-
lems, gfortran incorrectly handles

elemental functions on arrays and
scalars, e.g. f(array, g(scalar)) fails
for any elemental functions f and
g; nagfor incorrectly handles im-
plicit re-allocations such as array
= [array, scalar], and Ifort refuses
valid constructor syntax such as
array=[String::] when String is a
user-defined type.

36. gfortran, flang, openuh

37. Gfortran

38. Intel

39. Intel (most) , gfortran (for Linux).
Intel

40. GNU, Cray, Intel, PGI. Support for
F2008 and beyond is poor. I don’t
need OO features either as there
are better languages for that.

41. intel ifort largely but I do use oth-
ers

42. ifort, gfortran, yes

43. Lahey (old); gfortran

44. intel fortran

45. GNU, Intel

46. gfortran, ifort

47. Intel Fortran - supports ALL of
Fortran 2003 plus lots of Fortran
2018.

48. Intel, GCC, PGI

49. Cray (yes), Intel (most), gfortran
(most), PGI/NVIDIA (not really)

50. Ifort - yes. Gfortran - mostly.

51. gfortran

52. Gfortran. Yes

53. gfortran, intel

54. gfortran (gcc), ifort, nagfor, Cray

55. GCC, PGI, Intel, Cray mostly sup-
port the required features

56. Cray, Intel, PGI and GNU

27

57. intel, pgi, gfortran. We only
use features well-supported by all
three.

58. ifort, gfortran

59. GCC, Intel, both OK (though both
buggy sometimes)

60. Intel Fortran Compiler and Gnu
Fortran Compiler: both support
standard features that I want to
use, but GFortran seems to have
a better support of CAF wrt IFort

61. gfortran (generally quite good,
takes a very long time for some
features, e.g. only just got sub-
modules)

62. ifort (generally ok for new stand-
ards, but its code generation is
much more frequently incorrect)

63. nag (very very standards compli-
ant)

64. pgi (lags way behind standards)

65. cray (very hard to test without ac-
cess to supercomputer infrastruc-
ture, but from my understanding
it is generally up to date)

66. gfortran, Intel, Cray. Need to
have similar features (not partial
standard implementation). De-
bugging large parallel codes need
work, genrally end up with print
statement debugging.

67. NAG, Intel, gfortran NAG does not
support coarrays om more than
one image.

68. gfortran, intel

69. gnu, intel

70. intel/gnu yes

71. I use mostly intel fortran for large
pieces of code and occasionally
gfortran for smaller projects. In
our work we’ve started to use the

oop techniques, i.e. F2003 some
6 years ago. Since then ifort has
improved massively with regards
to the support for F2003 - earlier
versions such as v12 were riddled
with bugs. When I started using
oop essentially only ifort had some
of F2003 implemented. I guess
gfortran has improved since then
but I don’t know what the current
status is.

72. gfortran 8.1 , not full support of
F2008

73. Sun Solaris short of 2003; gfortran
has most of what I want to use

74. GNU and Intel

75. ifort, gfortran yes

76. Open Watcom F77. Supports F77
with a lot of F90 additions.

77. PGI (NVIDIA) and Intel, yes for
both

78. Intel/gfortran/cray - Some but for
a large code features need to be
supported by all.

79. ifort, fortran

80. Ifort, gfortran, nagfor. yes.

81. NAG for diagnosis and testing,
gfortran and ifort for final product.
They support most of features I
use most of the time.

82. ifort, gfortran: yes. Sun: most.
g95: many

83. Intel, gnu. Intel support most
desired features. Would have
preferred an LLVM based com-
piler; the return of Lahey/Fujitsu.
The biggest issue is the shrinking
vendor base.

84. gfortran on both Windows and
Linux. Yes they are fine

85. gfortran, yes

28

86. nagfor, gfortran, ifort, pgfortran.
(gfortran, ifort: generally ok; nag-
for: missing support for submod-
ules; pgfortran: too buggy for pro-
duction use)

87. F77 and F95. Have no need for
any higher level

88. GCC, iFort

89. gfortran - yes (although it would
be nice if coarrays were better in-
tegrated, i.e. not having to use
the opencoarray library explicitly).
ifort - yes.

90. Intel Visual Fortran, NAG Fortran,
GFortran: most features are sup-
ported

91. Gfortran, Intel Fortran

92. Intel Visual Fortran

93. Gfortran/OpenCoarrays and ifort.
Yes, they (will) do support the re-
quired features.

94. Ifort 17.0.4, Gfortran 6.3.0 both
support the features I currently
use.

95. gfortran and (decreasingly, be-
cause the performance advantage
is slighter than formerly) ifort

96. Intel, GNU, Cray. Most features
supported.

97. gnu, nag

98. Intel, NAG, gfortran. Not fully

99. gfortran, intel. Mostly, but poor
support for finalisation

100. GFortran, Intel Fortran 2013; Yes

101. gfortran 7, gfortran 8, ifort 2017,
pgfortran 2017. They support
some features, but not all.

102. mostly gfortran, sometimes ifort.

I have tried PGI recently, but it’s
support of fortran 2003 seemed
very poor – even my basic test
codes did not run. I use f03 fea-
tures all the time, so this is a deal-
breaker.

A key current limitation is coarray
support

I have had to work-around not-
so-good coarray support in ifort
(critical parts of my code were re-
written in MPI because ifort 18’s
coarrays were still not comparably
fast). Also I had to provide altern-
atives to the coarray collectives.

gfortan + opencoarrays seems
quite good for a ’basic but func-
tional’ subset of coarrays (e.g.
using allocatable coarrays inside
a module, with typical point-to-
point communication, and collect-
ives).

One thing that does not yet have
good support in gfortran/open-
coarrays is allocatable coarrays in-
side derived types. It seems like
this would be very natural for
many problems. In general, I like
to ’wrap up’ my code inside de-
rived types to keep the high-level
structure simple and easy to gener-
alise. But thus far I’ve avoided do-
ing this with coarrays due to com-
piler limitations, and I’m aware
that this is making parts of my
code harder to ’cleanly re-use’.

Other

Early experiences with object ori-
ented programming in gfortran
(4.8-ish) made me avoid crucial
elements (e.g. inheritance). Sim-
ilarly, seeing so many issues with
memory leaks / polymorphism
discussed on comp.lang.fortran
makes me cautious about using it.
Thus I tend to be writing ’object-
based’ codes.

29

103. gfortran ifort

104. Gnu, Intel

105. gfortran

106. intel gfortran openmp

107. Intel, gfortran, NAG, PGI. Good
support for all F95 and 2003.
Slowly adopting 2008.

108. I use Nag and gfortran. Nag is a
bit behind in terms of features so
we can’t use it all the time.

109. GNU, Intel, GNU still lacking sup-
port/buggy in allocatable charac-
ter strings

110. gfortran, Intel Fortran. Yes
(F2003).

111. gfortran and ifort. good support
so far.

112. mostly GNU Fortran 8 (good sup-
port for new features), but also In-
tel Fortran 17+ (worse support for
new features)

113. gfortran, intel, cray, I try to stick
to widely supported features.

114. gfortran,yes— watfor, only some

115. Gfortran, Intel. Yes

116. ifort, gfortran

117. gfortran, intel ifort. +

118. gfortran and ifort: they both do
not completely and reliably imple-
ment the features that I’d like to
use

119. Intel, GNU

120. Intel ifort 17, NAG nagfor 6.2 (still
lacks a few features I’d like to use)

121. Intel Fortran

122. ifort, gfortran

123. f90

124. Intel

125. GFORTRAN, IFORT, PGF90

126. ifort. Yes.

127. gfortran - supports most features I
want - parameterized derived types
not fully supported (I think)

128. g77, gfortran

129. gfortran, yes

130. I use gnu fortran (and until re-
cently, Absoft Fortran). As you
can see from my answers, I’m not
a sophisticated user, and make do
with what I have in my Fortran
77/95 world! I would like improved
handling of character strings, but I
suspect that’s already in one of the
current updates.

131. gnu fortran

132. gfortran-fsf-4.9

133. f77, g77

134. gfortran, ifort

135. Intel Fortran has everything I need

136. gfortran, ifort

137. PGI, GCC - they support
everything I need at this time.

138. Intel, gfortran - yes

139. gfortran, ifort

140. gfortran and Intel Fortran

141. gfortran, f95

142. PGI, Intel and GCC. Only Intel
supports FINDLOC

143. Intel Fortran. Yes.

144. Intel Fortran

145. gfortran, Absoft

146. g77

30

147. gfortran - missing further interop-
erability with C

148. intel

149. gfortran and FTN95

150. gfortran supports most of what I’m
interested in, except submodules
and error stop in pure procedures.

151. gfortran, ifort; support is okay for
the most part

152. Intel, gcc

153. gfortran

154. Cray, GNU, Intel mostly support.
PGI, XL, NEC still rather abysmal

155. gfortran and ifort, yes for both

156. Lahey, Absoft, Intel, gfortran.

157. Intel

158. gfortran

159. Ifort and gfortran

160. GNU

161. intel (supports all features), gnu
(supports most features)

162. Intel, PGI, GNU, Cray

163. Intel

164. gfortran (yes/no), Intel Fortran
(yes)

165. ifort and gfortran. ifort is slightly
better in this matter but seems to
have more bugs in new Fortran fea-
tures.

166. Intel

167. intel

168. ifort, yes

169. Intel and Lahey, if I update

170. gfortran (GNU), ifort (Intel),
pgf90 (Portland), nagfort (oc-
caisionally)

171. ifort 18, gfortran

172. I am using GCC, it only has very
limited intrinsic functions

173. Intel visual fortran

174. Intel and PGI. They supports most
of the features what I want.

175. Intel Fortran Compiler

176. Intel Fortran

177. Intel - gfortran

178. Intel and gfortran. Most but not
all.

179. Intel mostly

180. ifort and gfortran

181. Intel Fortran, yes

182. gfortran, mostly does what I need

183. I typically have Intel and some-
times gnu.

184. gfortran

185. GNU , Intel, PGI and Flang

186. gfortran 7

187. gfortran. Standard features I use
are supported

188. Plato 95 and Microsoft Visual Stu-
dio with Fortran 2018. Yes, they
support the standards I want to
use.

189. gfortran, g95, intel

190. Intel, PGI, Cray, IBM, Gnu. Of
these, Intel and Gnu seem to have
the most robust support for F2008.
In principal I think they all support
the features I want but in practice
there are bugs...

31

191. GFortran (supports most new fea-
tures), PGI doesn’t support Coar-
ray which is a major issue!

192. gnu

193. Gfortran, yes

194. gfortran (most features, but the
available versions on HPC clusters
are often very old), ifort (many
features, but often buggy imple-
mentations), xlf (many features,
but

195. gfortran and ifort. Their current
versions support everything I’ve
tried to use, but the versions in-
stalled on scientific clusters barely
support F2008 so I’ve had to re-
move some of those features from
my code.

196. PGI

197. gfortran 5.4.0, ifort 2012 vintage

198. gcc, intel

199. gnu, intel. nag for testing and de-
bugging. yes, they do.

200. Intel Fortran Compiler. Yes.

201. gfortran

202. gfortran and ifort

203. GNU Fortran 7, Intel Fortran 14,
PGI Fortran 13

204. gfortran, intel

205. gfortran, ifort

206. Intel, Gnu (does not), Pgi

207. gfortran, ifort – both approach the
support of the most useful features
of 2008

208. gcc 4.8 to 7, intel 17; yes

209. Gfortran,nagfor,ifort,g95

210. Portland, Intel, gfortran

211. nagfor, ifort, gfortran

212. Intel, Sun, gfortran, flang, Cray,
PGI, NAG. Some are lacking sup-
port for 2003/2008 features, pre-
venting adoption of selected newer
features for reasons of portability.

213. gnu, intel, cray: yes they support
all I need

214. gfotran

215. I am learning fortran IV for use in
pdp-8 emulation. The algebraic
context is quite helpful. Fortran
IV has relatively few features. A
more free, choose-your-code sys-
tem would make fortran popular
and accessible. From an entry
standpoint such a platform would
create engineering access to com-
petative computer programming.

216. PGI, XLF, gfortran, Cray – none
support all

217. I stopped using it in 1982

218. Cray Compiler (near support);
GCC (near support); XL Fortran
(near support)

219. Cray, PGI, Gnu, Intel. They all
have bugs in some of the F2003
features we want to use. For some
features there are workarounds re-
quired to get them to work.

220. Gfortran, ifort, nagfor

221. gfortran

222. 77

223. F77

224. Gfortran, Intel, PGI

225. gfortran, ifort, pgfortran, SunStu-
dio, g95, CVF, FTN95: All ex-
cept g95 support everything we
currently need for most applica-
tions.

226. GNU, Intel

32

227. Gfortran mostly. It still needs full
compatibility with coarrays.

228. GNU Fortran

229. Intel, gfortran, pgi, craympi

230. ifort

231. gfortran. No

232. intel and gnu and yes

233. ifort, gfortran

234. IFORT, if you can afford the new-
est compiler there is no issue

235. gfortran, nagfor, ifort (yes they do)

236. gfortran, yes

237. gfortran

238. gfortran and NaG compiler

239. gfortran, ifort, pgi, cray, IBM. All
support all core features that we
use, but we do not try to use fea-
tures not supported in all these
compilers

240. gfortran

241. Intel and GCC. Both support all of
the Fortran 2008+ features I use.

242. gfortran

243. Intel ifort, Gnu gfortran, but some-
times Cray’s Fortran. Cray’s com-
piler is somewhat older now as is
the Cray machine used recently, a
few minor problems fixed by re-
verting back, e.g. don’t equival-
ence to a SEQUENCE struct. The
essential ”newer” features were
fine on all 3, namely allocatable ar-
rays and structures.

244. gnu, ifort. Yes.

245. Intel Fortran 11. Looking at gFor-
tran to move beyond F95.

246. PGI, Intel, Cray

247. Using Intel, NAG, and gfortran.
The commercial compilers support
most of the standard features I
want to use.

248. Intel fortran - yes

249. Intel

250. Ifort, gfortran. I don’t really know
if they support what I use. I’ve
been programming in C for my job
since most folks prefer that.

251. Gfortran and it does

252. gfortran (does not support), Intel
ifort (partial support)

253. gfortran, ifort. Yes, except coar-
rays.

254. intel, gfortran, pgi, xlf

255. gfortran, flang, g77

256. g++, xlf, ifort

257. Intel and fortran; mostly

258. ifort; gfortran; nag - main prob-
lem relates to lack of portability of
.mod file

259. gfortran (Is OK)

260. gfortran, ifort

261. gfortran and Intel fortran - Yes

262. gfortran, intel

263. gfortran, ifort ... no they do not
have powerful macros

264. Intel, Absoft

265. ifort, gfortran, flang

266. GNU, Lahey

267. Intel Fortran, yes

268. Intel

269. Intel, GNU

33

270. I use gfortran, and it seems to have
most of the features I need. The
only exceptions have been external
math libraries that I have to wrap
in a C function.

271. Intel

272. gfortran, ifort

273. gcc/gfortran

274. Intel, PGI, GNU

275. Intel Visual Fortran XE 2013

276. ifort, gfortran

277. gfortran, It seems to provide for
my needs and it is free!

278. Intel

279. Gnu

280. gfortran (yes)

281. intel fortran , gnu fortran , PGI for-
tran. Yes, they have.

282. gfortran, mostly. yes.

283. g77, g95

284. Intel, PGI and some g95. Intel and
PGI support all the features I use.

285. Mainly Nec Fortran Compiler. It’s
behind in adoption of newer stand-
ards.

286. GNU Fortran and Intel Fortran
most features I need are supported

287. gfortran; yes.

288. gfortran and ifort

289. gfortran

290. Intel, Gnu, Cray, Flang

291. fortran, mostly

292. gfortran, Intel Fortran, PGI, flang,
dragonegg

293. gfortran, mostly

294. intel and PGI

295. Intel, gnu, nag

296. Intel, PGI(Nvidia)

297. Intel Fortran, gfortran - coarrays
are the one feature that I dearly
want to get more acquainted with
in a convenient way. Open Coar-
rays is definitely going to help.

298. Intel composer 2018. Yes.

299. Gfortran

300. gcc, Intel

301. intel, gnu, nag, pgi. Most have rel-
atively good Fortran 2003 support,
but pgi support is buggy.

302. Absoft, Intel, Gfortran

303. Gfortran, ifort, xlf. They all do

304. gfortran, Nag, Intel. Needing to
support these (and others such as
PGI) means only using the com-
mon denominator of bug-free fea-
tures which severely limits the For-
tran 2008 features we can use.

305. IBM XLF, gfort etc. I have the
features I need.

306. Ifort Cray

307. Intel Fortan, G95, gfortran, HP
Fortran, g77

308. gnu fortran 7, Intel Fortran. Not
all features supported.

309. ifort, gfortran

310. intel and gnu

311. Intel Fortran Compiler (ifort),
GNU Fortran compiler (gfortran).
Generally everything is supported
promptly in ifort but takes a little
while for gfortran to catch up.

312. GNU Fortran

313. intel gnu pgi none support the full
set of features in the same way.

34

314. ifort

315. gfortran, ifort, xlf, ...

316. ifort and to lesser extent gfortran
- both ok in terms of standards
support (but older versions with
incomplete standards support are
still in use, sometimes hindering
adoption of our new code)

317. xlf/IBM, ifort/INTEL, gfor-
tran/GNU, pgi/PORTLAND

318. GCC, Intel, PGI

319. gfortran, portland group, yes

320. gfortran

321. Gcc and Intel. Yes they support
everything we need

322. N/A

323. gfortran, yes

324. GNU & Intel. They claim to sup-
port for example procedure point-
ers, but both exhibit ICE and in-
valid runtime code on edge cases.

325. GFortran and IFort. At least one
does not support %re and %im. At
least one does not support hyper-
bolic functions (atanh etc).

326. GCC gfortran, Intel

327. Intel Fortran, gfortran, pgi

328. Intel, GFortran

329. GNU, IBM and Intel compilers.

330. Intel; yes

331. gnu, intel, nag, pgi if absolutely
force to

332. Intel, GNU, PGI, IBM. They do
not always support all the features
I would want to use

333. GCC, Intel

334. gfortran; yes

335. gfortran, nagfor, ifort. They all
support the features I use.

336. gfortran ifort

337. gcc (gfortran)

338. gcc, pgi

339. Gfortran, Intel and PGI. No they
don’t.

340. gfortran ifort

341. gfortran

342. gfortran not all

343. Intel18

344. intel fortran 2018, absoft pro for-
tran 2018

345. gfortran: I’m a minor contributor
to one project that distributes bin-
aries of 7.2 for consistent results
across systems. Earlier versions
don’t support enough of the new
features. My personal work tends
not to use many new Fortran fea-
tures so I’ve been fine with versions
as old as 4.8 (3-5 years old).

346. The thread-safe random number
generation (version 7 on) will be
critical in planned development,
though.

347. Intel, GFortran; yes

348. gfortran, intel, pgi

349. Intel Fortran

350. PGI Fortran

351. GNU Fortran

352. Oracle Fortran

353. PathScale Fortran

354. Intel 18.0, gcc 7.2.0

355. Gnu, Intel

356. Intel16.0 Intel 18.0 Gcc/7.2.0

35

357. intel, xlf, gfortran, partially (but all
slightly different)

358. Intel

359. GNU, Intel. They support them.

360. Gfortran, yes

361. gfortran - supports what I use and
features I want to start using, but
haven’t gotten around to yet

362. pgi - In theory is supports what I
use, but very buggy and requires
lots of workarounds- especially for
object-oriented features.

363. cray - Same as pgi above

364. gcc/8.1.0+, Intel 18+, IBM XL
16.1.1+: They do mostly, some-
times buggy

365. gfortran (planning also to use PGI
Fortran)

366. Intel, gfortran

367. Gfortran

368. gfortran 6.4,mostly

369. gfortran

370. gfortran, ifort (but we do not use
the latest features as our user base
is very heterogeneous and compiler
versions in use might not support
them)

371. GNU and INTEL. They do not
actually support all standard fea-
tures we want to use. Indeed, fra-
gile/partial, and/or late support of
some standard features is awful.

36

5 About you

37

5.1 Which country are you based in? 384 responses

NUM % Country

120 31 U ni te d S t a t e s
117 30 U ni te d Kingdom

27 7 Germany
17 4 N e t h e r l a n d s
14 4 France

8 2 Canada
7 2 I t a l y
6 2 Spa in
5 1 B r a z i l , Russ ia , Sweden
4 1 A u s t r a l i a , New Zea land
3 <1 A r g e n t i n a , Belgium , China , I n d i a , Norway , Poland
2 <1 Denmark , The Gambia , Greece , S w i t z e r l a n d , Vietnam
1 <1 A l g e r i a , Ashmore and C a r t i e r I s l a n d s , Cayman I s l a n d s ,

C h i l e , Czech R e p u b l i c , E s t o n i a , F i n l a n d , I r a n , I r e l a n d ,
Luxembourg , Malays ia , Romania , Saud i Arab ia , S l o v e n i a ,
South A f r i c a , Turkey , U k r a i n e

384 T o t a l

38

	Introduction
	Have newer Fortran standards brought you any of the following benefits?
	Please tick any features which you use, or for F2018, are planning to use
	Fortran 95, 408 responses
	Pre-set responses
	Additional responses

	F2003, 355 responses
	Pre-set responses
	Additional responses

	F2008, 310 responses
	Pre-set responses
	Additional responses

	Fortran 2018 (previously known as 2015), 180 responses
	Pre-set responses
	Additional responses

	Future of the Fortran Language
	If you think Fortran is lacking particular features which would help you, please detail them here, 150 responses
	What Fortran compiler(s) are you using? And does it (do they) support the standard features you want to use? 371 responses

	About you
	Which country are you based in? 384 responses

