

Contents

Flang
« Performance
- Standards Conformance

- Why new Flang

New Flang/F18

* Intro
« Internals

- Status

 Conclusion

2 © 2019 Arm Limited

arm

Introduction

. FIang is a Fortran frontend designed to work with the LLVM Compiler Infrastructure
* Sponsored by US DoE and its National Labs
* Open-sourced by Nvidia/PGI with an Apache-2 license
* Available since May 2017. https://github.com/flang-compiler/flang
* Supports X86_64, Aarch64 and PowerPC
* Fills a key gap in LLVM for HPC

* Common frontend for some commercial compilers
* PGl Compiler
* Arm Compiler for Linux
* AMD AOCC

3 © 2019 Arm Limited a r m

https://github.com/flang-compiler/flang

Performance

140.0% e
120.0% -~ mGNU7.3.0

100.0% | “PS183
80.0%
60.0%
40.0%
20.0%
0.0%

° Q Q Q Q
& & &7 < @ R
o & c,QQ')

]

503.bwaves

FLANG SINGLE-CORE PERFORMANCE

All runs on Intel Xeon Skylake

338.5 2943 313.7
507.cactuBSSN 257.8 255.9 257.8
521.wrf 334.1 294.0 487.6
527.cam 357.1 3339 372.0
549 fotonik3d 373.0 3634 4135
554.roms 227.4 231.7 304.7

309.7 292.2 350.3

oé Flang Dev: -02 -ffast-math -march=native
o GNU: -03 -ffast-math -fpeel-loops -funroll-loops
PGl 18.3: -fast -Bstatic_pgi -Mfprelaxed -Mhugetlb -Mnouniform
-Mstack_arrays

20 core Intel Skylake Gold processor @ 2.4GHz with 256 GB

Source : Flang Update by Steve Scalpone @ Euro LLVM, 2018

4 © 2019 Arm Limited

memory

arm

Standards Conformance

°* Fortran 2003

* Full Support
* A few intrinsics are not supported in intialisation

°* Fortran 2008

* Partial Support

* Submodules, contiguous attribute, intrinsics (Bessel, gamma, norm2 etc)
* Do concurrent supported with serial execution

* Coarrays, Block construct, intrinsics (merging, masking etc)

* Work underway for Block construct

* No plan for Coarrays
— No customer has specifically asked for this
— Open Coarrays a bit tied to Gfortran

°* Fortran 2018
* No plan

5 © 2019 Arm Limited a r m

Issues

* Code contribution requires a CLA
* Prolonged Pull Request processing due to dependency of flang on PGl’s commercial
compiler

* Code is old, difficult to maintain, entry barrier is high
- Difficult to implement new features

* Error messages do not give full information (e.g : no column)

* Flang cannot be an LLVM project

« Written in C

- Cannot be used as a library or for building tools
- Does not use the IRBuilder

- Command line flags are not name based

* Time for a new Flang?

6 © 2019 Arm Limited a r m

New Flang/F18

* New Fortran frontend developed as an Open source Project
- Apache-2 License. Will change to match LLVM
- No CLA required
- PGl is lead developer
- Arm is contributing

* Features
- Uses 2018 standard as the reference for implementation
- Very standards friendly
« Written in modern C++ (C++17)
« AST as C++ classes
- AST lowered only after semantic checks
- High quality source locations
- Can be used for tooling
- Flangd already in the works

7 © 2019 Arm Limited

arm

F18 Preprocessing

8

Prescanner generates cooked character stream
- Normalized source

- Expanded macros, character case

- Hides complexity from rest of compiler

Provenance

- Index into cooked character stream

- Map from cooked character stream to sources
maintained

© 2019 Arm Limited

Input/Output

Compiler Pass/Stage

Semantic Analysis Symbol Table

O<

Mod Parse Tree

arm

F18 Parsing

* Recursive Descent Parsing

* Grammar taken from standard and suitably
modified
- Left recursion removed

e Uses Parser combinators
- Token parser
- Operators & functions to combine parsers

* Parse tree closely follows specification in the
standard

9 © 2019 Arm Limited

IFortran source
integer: :x=1

//2018 standards document

//R803 entity-dec| ->

//object-name [(array-spec)] [Ibracket coarray-spec rbracket]
// [* char-length] [initialization]

//lib/parser/grammar.h
PARSER (construct<EntityDecl> (objectName,

maybe (arraySpec), maybe (coarraySpec),
maybe ("*" >> charLength),
maybe (initialization)))

//Parse Tree Node (lib/parser/parse-tree.h)
std: :tuple<ObjectName,

std: :optional<ArraySpec>,

std: :optional<CoarraySpec>,

std: :optional<CharLength>,
std::optional<Initialization>> t;q rm

F18 Semantic Analysis input/Output

Compiler Pass/Stage

* Checks the rules/constraints mentioned in the
standard P

* Modifies parse tree if ambiguous
* Creates Symbol table

=3
Gt
* Constant Expression evaluation u.._]
<
[—%

 Emits Module files

-

10 © 2019 Arm Limited

arm

Descriptor

/* 18.5.3 generic data descriptor */
typedef struct CFI cdesc t |

11

/* These three members must appear first,
in exactly this order. */

void *base addr;

size t elem len; /* element size in bytes */
int version; /* == CFI VERSION */

CFI rank t rank; /* [0 .. CFI MAX RANK] */
CFI type t type;

CFI attribute t attribute;

unsigned char fl18Addendum;

CFI dim t dim[]; /* must appear last */
CEFI cdesc t;

© 2019 Arm Limited

//Addendum

const DerivedType
*derivedType {nullptr};

std::uint64 t flags {0};

TypeParameterValue len [1];

arm

Module Format

* Modules will be stored as Fortran source

- Module files will contain a header
— Magic string, Version, Checksum
- The body will contain declarations of all user visible entities

* Reading module files is fast
- Fast parser, No pre-processing necessary

Imymod.f90 !vars.mod

module vars Imod$S vl sum:672b5185d5193446
integer :: a module vars

real :: b integer(4)::a

contains real(4)::b

subroutine add_val_a(x) contains

integer :: x subroutine add val a(x)

a=a+Xx integer(4)::x

end subroutine end

end module end

12 © 2019 Arm Limited q r' m

O ptl m |Zer Input/Output

Compiler Pass/Stage

e Uses MLIR for developing a high level IR R
* MLIR is a framework for developing IRs e
* FIR (Fortran IR) is the name of the dialect —
e After several optimizations, the FIR dialect is converted

to the LLVM dialect. B2

e The LLVM dialect is then translated to LLVM IR

LLVM I
13 © 2019 Arm Limited q r m

Status

Parser work is complete

- Parses Fortran 2018
« OpenMP 4.5

* Semantic Checks are nearing completion
- Switched ON by default if run as flang

* Work in progress on MLIR based optimizer

* Work beginning on runtime
- Rewriting some portions in C++
« Will retain 1/0O library functions of Old Flang
- Math library will continue to be pgmath

e Tentative Timeline
- Serial codegen by end of this year
- Parallel codegen (OpenMP 4.5) by end of next year
« OpenMP 5.0 + Coarrays by end of 2021

14 © 2019 Arm Limited q r m

Conclusion

* Old Flang demonstrated that an industry strength, performant LLVM based Fortran
compiler is possible

* New Flang/F18 addresses the deficiencies and will be the Fortran frontend of LLVM
* New Flang makes creation of compiler tools possible

* Aspires to be the compiler of choice for prototyping features for standardization
- Adheres to 2018 standard

* New Flang is under development
- You can contribute
« https://github.com/flang-compiler/f18/projects
« https://github.com/flang-compiler/f18/tree/master/documentation

15 © 2019 Arm Limited a r m

https://github.com/flang-compiler/f18/projects
https://github.com/flang-compiler/f18/tree/master/documentation

© 2019 Arm Limited

~ Thank You
DERLGE
Merci

R DR
HYMES

- @Gracias
, - Kiitos
T Are L Cf
Teddiq
54

nNTIN

