
Kiran Chandramohan
Arm Ltd

New Flang: The Modern
Fortran Frontend of LLVM

BCS Fortran Meeting
24 Sep 2019

2 © 2019 Arm Limited

Contents

• Flang

• Performance

• Standards Conformance

• Why new Flang

• New Flang/F18
• Intro

• Internals

• Status

• Conclusion

3 © 2019 Arm Limited

Introduction
• Flang is a Fortran frontend designed to work with the LLVM Compiler Infrastructure

• Sponsored by US DoE and its National Labs
• Open-sourced by Nvidia/PGI with an Apache-2 license
• Available since May 2017. https://github.com/flang-compiler/flang
• Supports X86_64, Aarch64 and PowerPC
• Fills a key gap in LLVM for HPC

• Common frontend for some commercial compilers
• PGI Compiler
• Arm Compiler for Linux
• AMD AOCC

https://github.com/flang-compiler/flang

4 © 2019 Arm Limited

Performance

20 core Intel Skylake Gold processor @ 2.4GHz with 256 GB
memory

Source : Flang Update by Steve Scalpone @ Euro LLVM, 2018

5 © 2019 Arm Limited

Standards Conformance
• Fortran 2003

• Full Support
• A few intrinsics are not supported in intialisation

• Fortran 2008
• Partial Support
• Submodules, contiguous attribute, intrinsics (Bessel, gamma, norm2 etc)
• Do concurrent supported with serial execution
• Coarrays, Block construct, intrinsics (merging, masking etc)
• Work underway for Block construct
• No plan for Coarrays

– No customer has specifically asked for this
– Open Coarrays a bit tied to Gfortran

• Fortran 2018
• No plan

6 © 2019 Arm Limited

Issues
• Code contribution requires a CLA
• Prolonged Pull Request processing due to dependency of flang on PGI’s commercial

compiler
• Code is old, difficult to maintain, entry barrier is high

• Difficult to implement new features

• Error messages do not give full information (e.g : no column)
• Flang cannot be an LLVM project

• Written in C
• Cannot be used as a library or for building tools
• Does not use the IRBuilder
• Command line flags are not name based

• Time for a new Flang?

7 © 2019 Arm Limited

New Flang/F18
• New Fortran frontend developed as an Open source Project

• Apache-2 License. Will change to match LLVM
• No CLA required
• PGI is lead developer
• Arm is contributing

• Features
• Uses 2018 standard as the reference for implementation
• Very standards friendly
• Written in modern C++ (C++17)
• AST as C++ classes
• AST lowered only after semantic checks
• High quality source locations
• Can be used for tooling
• Flangd already in the works

8 © 2019 Arm Limited

F18 Preprocessing

• Prescanner generates cooked character stream
• Normalized source
• Expanded macros, character case
• Hides complexity from rest of compiler

• Provenance
• Index into cooked character stream
• Map from cooked character stream to sources

maintained

Input/Output

Compiler Pass/Stage

9 © 2019 Arm Limited

F18 Parsing

• Recursive Descent Parsing
• Grammar taken from standard and suitably

modified
• Left recursion removed

• Uses Parser combinators
• Token parser
• Operators & functions to combine parsers

• Parse tree closely follows specification in the
standard

!Fortran source
integer::x=1

//lib/parser/grammar.h
PARSER(construct<EntityDecl>(objectName,
maybe(arraySpec), maybe(coarraySpec),
maybe("*" >> charLength),
maybe(initialization)))

//Parse Tree Node (lib/parser/parse-tree.h)
std::tuple<ObjectName,
std::optional<ArraySpec>,
std::optional<CoarraySpec>,
std::optional<CharLength>,
std::optional<Initialization>> t;

//2018 standards document
//R803 entity-decl ->
//object-name [(array-spec)] [lbracket coarray-spec rbracket]
// [* char-length] [initialization]

10 © 2019 Arm Limited

F18 Semantic Analysis

• Checks the rules/constraints mentioned in the
standard

• Modifies parse tree if ambiguous
• Creates Symbol table
• Constant Expression evaluation
• Emits Module files

Input/Output

Compiler Pass/Stage

11 © 2019 Arm Limited

Descriptor
/* 18.5.3 generic data descriptor */
typedef struct CFI_cdesc_t {

/* These three members must appear first,

in exactly this order. */

void *base_addr;

size_t elem_len; /* element size in bytes */

int version; /* == CFI_VERSION */

CFI_rank_t rank; /* [0 .. CFI_MAX_RANK] */

CFI_type_t type;

CFI_attribute_t attribute;

unsigned char f18Addendum;

CFI_dim_t dim[]; /* must appear last */

} CFI_cdesc_t;

//Addendum
const DerivedType
*derivedType_{nullptr};

std::uint64_t flags_{0};
TypeParameterValue len_[1];

12 © 2019 Arm Limited

Module Format
• Modules will be stored as Fortran source

• Module files will contain a header
– Magic string, Version, Checksum

• The body will contain declarations of all user visible entities

• Reading module files is fast
• Fast parser, No pre-processing necessary

!vars.mod
!mod$ v1 sum:672b5185d5193446
module vars
integer(4)::a
real(4)::b
contains
subroutine add_val_a(x)
integer(4)::x
end
end

!mymod.f90
module vars
integer :: a
real :: b
contains
subroutine add_val_a(x)
integer :: x
a = a + x
end subroutine
end module

13 © 2019 Arm Limited

Optimizer Input/Output

Compiler Pass/Stage

• Uses MLIR for developing a high level IR
• MLIR is a framework for developing IRs
• FIR (Fortran IR) is the name of the dialect
• After several optimizations, the FIR dialect is converted

to the LLVM dialect.
• The LLVM dialect is then translated to LLVM IR

14 © 2019 Arm Limited

Status
• Parser work is complete

• Parses Fortran 2018
• OpenMP 4.5

• Semantic Checks are nearing completion
• Switched ON by default if run as flang

• Work in progress on MLIR based optimizer
• Work beginning on runtime

• Rewriting some portions in C++
• Will retain I/O library functions of Old Flang
• Math library will continue to be pgmath

• Tentative Timeline
• Serial codegen by end of this year
• Parallel codegen (OpenMP 4.5) by end of next year
• OpenMP 5.0 + Coarrays by end of 2021

15 © 2019 Arm Limited

Conclusion
• Old Flang demonstrated that an industry strength, performant LLVM based Fortran

compiler is possible
• New Flang/F18 addresses the deficiencies and will be the Fortran frontend of LLVM
• New Flang makes creation of compiler tools possible
• Aspires to be the compiler of choice for prototyping features for standardization

• Adheres to 2018 standard

• New Flang is under development
• You can contribute
• https://github.com/flang-compiler/f18/projects
• https://github.com/flang-compiler/f18/tree/master/documentation

https://github.com/flang-compiler/f18/projects
https://github.com/flang-compiler/f18/tree/master/documentation

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2019 Arm Limited

