
GNU fortran

Paul Thomas,
Glyme Consultancy Limited

BCS Meeting 27th September 2018

⚫ Contributors, past and present:

Harald Anlauf, Janne Blomqvist, Steven Bosscher, Paul Brook, Tobias Burnus,
François-Xavier Coudert, Bud Davis, Jerry DeLisle, Arnaud Desitter, Eric
Edelsonn, Alessandro Fanfarillo, Daniel Franke, Katherine Holcomb,
Dominique d'Humieres, Steven G. Kargl, Nicolas Koenig, Thomas Koenig,
Daniel Kraft, Louis Krupp, Rainer Orth, Asher Langton, Mike Kumbera, Victor
Leikehman, Dave Love, Toon Moene, Mikael Morin, Fritz Reese, Jeurgen
Reuter, Damian Rouson, Tobias Schlüter, Lars Segerlund, Gerhard Steinmetz,
Paul Thomas, Andy Vaught, Andre Vehrschild, Feng Wang, Janus Weil,
Canqun Yang and Xiaoqiang Zhang.

⚫ GCC maintainers who have helped significantly:

Jakub Jelnik, Richard Biener, Jan Hubicka, Andrew Pinski, Bernhard Reutner-Fischer,
Eric Botcazou, Qing Zhao, Martin Liska, Richard Sandiford, Cesar Philippidis, Thomas
Schwinge, Nathan Sidwell, Martin Sebor and many others

⚫ ...and all the contributors of bug reports on gcc Bugzilla

BCS Meeting 27th September 2018

Maintainers/Developers are mostly part-time volunteers

• Pros:

• They are fortran users (mainly graduate students or post-docs)

• They are well committed to what they want or need to do.

• Cons:

• They are well committed to what they want or need to do… and
not, by and large, much more. A steering committee would be
faced with the “herding cats” problem.

• There is a lack of consistency in design approach, which has led to
some fuzziness between parsing, resolution and translation.

• Some parts of the code have become rather unstructured by
piling bug fix on bug fix.

• Some of the more difficult bugs require a deep knowledge of
TREE_SSA and back-end functioning to fix.

BCS Meeting 27th September 2018

A Brief History:

⚫ Since GCC version 4.0.0, released in April 2005, gfortran has
replaced the older g77 compiler.

⚫ The new Fortran front-end for GCC was rewritten from scratch,
largely by Any Vaught and Paul Brook, after the principal author and
maintainer of g77, Craig Burley, decided in 2001 to stop working on
the g77 front end.

⚫ gfortran forked off from g95 in January 2003, which itself started in
early 2000. As far as I can tell, Andy Vaught stopped maintaining g95
sometime around 2010/11.

⚫ Since 2010 the front-end, like the rest of the GCC project, was
migrated to C++, while it was previously written in C.

⚫ The initial aim was to provide a frontend with complete F95
compliance, reasonable performance and legacy g77 support. That
was achieved sometime in the late “naughties”. Since then, F20xx
and DEC/Cray legacy features have been added.

BCS Meeting 27th September 2018

Structure of gfortran (i):

• The parser and resolution stages produce an intermediate
representation of the fortran code.

• This can be exposed with the option –fdump-parse-tree

implicit none

type :: mytype

integer :: i

integer, allocatable, dimension(:) :: j

end type mytype

type(mytype) :: x

x%i = 42

x%j = [1,2,3,4]

print *, x%i

print *, x%j

end

sends to stdout…..
BCS Meeting 27th September 2018

Namespace: A-Z: (UNKNOWN 0)

procedure name = MAIN__

symtree: 'MAIN__' || symbol: 'MAIN__'

type spec : (UNKNOWN 0)

attributes: (PROGRAM PUBLIC SUBROUTINE)

symtree: 'Mytype' || symbol: 'mytype'

type spec : (UNKNOWN 0)

attributes: (DERIVED)

components:

(i (INTEGER 4) ())

(j (INTEGER 4) ALLOCATABLE DIMENSION (1 [0] AS_DEFERRED () ()))

hash: 85374412

Procedure bindings:

Operator bindings:

symtree: 'mytype' || symbol: 'mytype'

type spec : (UNKNOWN 0)

attributes: (PROCEDURE FUNCTION)

Generic interfaces: mytype

symtree: 'x' || symbol: 'x'

type spec : (DERIVED mytype)

attributes: (VARIABLE)

value: mytype(() , NULL())

code:

ASSIGN MAIN__:x % i 42

ASSIGN MAIN__:x % j(FULL) (/ 1 , 2 , 3 , 4 /)

WRITE UNIT=6 FMT=-1

TRANSFER MAIN__:x % i

DT_END

WRITE UNIT=6 FMT=-1

TRANSFER MAIN__:x % j(FULL)

DT_END

specification
part

code

BCS Meeting 27th September 2018

Structure of gfortran (ii):

• The translation stage converts the intermediate representation
into TREE_SSA for the middle- and back-ends.

• This can be exposed with the option –fdump-tree-original

• Output is written to:

<myfilename.f90>.<version code>.original

the line x%j = [1,2,3,4]

produces…..

BCS Meeting 27th September 2018

{

integer(kind=4)[0:] * restrict D.3794;

integer(kind=8) D.3795;

integer(kind=8) D.3796;

integer(kind=8) D.3797;

static integer(kind=4) A.1[4] = {1, 2, 3, 4};

integer(kind=8) D.3800;

D.3794 = (integer(kind=4)[0:] * restrict) x.j.data;

D.3795 = x.j.offset;

D.3796 = x.j.dim[0].lbound;

D.3797 = x.j.dim[0].ubound;

D.3800 = NON_LVALUE_EXPR <D.3796>;

{

integer(kind=8) S.2;

{

logical(kind=4) D.3804;

integer(kind=8) D.3805;

logical(kind=4) D.3806;

D.3804 = (integer(kind=4)[0:] * restrict) x.j.data == 0B;

if (D.3804) goto L.1;

if (x.j.dim[0].lbound + 3 != x.j.dim[0].ubound) goto L.1;

goto L.2;

L.1:;

if (D.3804)

{

D.3805 = 0;

}

else

{

D.3805 = MAX_EXPR <x.j.dim[0].ubound - x.j.dim[0].lbound, -1> + 1;

}

D.3806 = D.3805 != 4;

x.j.dim[0].lbound = 1;

x.j.dim[0].ubound = 4;

x.j.dim[0].stride = 1;

x.j.offset = -NON_LVALUE_EXPR <x.j.dim[0].lbound>;

D.3795 = x.j.offset;

D.3800 = NON_LVALUE_EXPR <x.j.dim[0].lbound>;

if ((integer(kind=4)[0:] * restrict) x.j.data == 0B)

{

x.j.data = (void * restrict) __builtin_malloc (16);

x.j.dtype = {.elem_len=4, .rank=1, .type=1};

}

else

{

if (D.3806)

{

x.j.data = (void * restrict) __builtin_realloc ((void *) x.j.data, 16);

}

}

D.3794 = (integer(kind=4)[0:] * restrict) x.j.data;

L.2:;

}

S.2 = 0;

while (1)

{

if (S.2 > 3) goto L.3;

(*D.3794)[(S.2 + D.3800) + D.3795] = A.1[S.2];

S.2 = S.2 + 1;

}

L.3:;

}

}

Essential for debugging
compiler

Useless for most users,
except….

….can be used to convert
F20xx into C

“scalarized” assignmentReallocation on assignment

BCS Meeting 27th September 2018

{

integer(kind=4)[0:] * restrict D.3794;

integer(kind=8) D.3795;

integer(kind=8) D.3796;

integer(kind=8) D.3797;

static integer(kind=4) A.1[4] = {1, 2, 3, 4};

integer(kind=8) D.3800;

D.3794 = (integer(kind=4)[0:] * restrict) x.j.data;

D.3795 = x.j.offset;

D.3796 = x.j.dim[0].lbound;

D.3797 = x.j.dim[0].ubound;

D.3800 = NON_LVALUE_EXPR <D.3796>;

{

integer(kind=8) S.2;

{

logical(kind=4) D.3804;

integer(kind=8) D.3805;

logical(kind=4) D.3806;

D.3804 = (integer(kind=4)[0:] * restrict) x.j.data == 0B;

if (D.3804) goto L.1;

if (x.j.dim[0].lbound + 3 != x.j.dim[0].ubound) goto L.1;

goto L.2;

L.1:;

if (D.3804)

{

D.3805 = 0;

}

else

{

D.3805 = MAX_EXPR <x.j.dim[0].ubound - x.j.dim[0].lbound, -1> + 1;

}

D.3806 = D.3805 != 4;

x.j.dim[0].lbound = 1;

x.j.dim[0].ubound = 4;

x.j.dim[0].stride = 1;

x.j.offset = -NON_LVALUE_EXPR <x.j.dim[0].lbound>;

D.3795 = x.j.offset;

D.3800 = NON_LVALUE_EXPR <x.j.dim[0].lbound>;

if ((integer(kind=4)[0:] * restrict) x.j.data == 0B)

{

x.j.data = (void * restrict) __builtin_malloc (16);

x.j.dtype = {.elem_len=4, .rank=1, .type=1};

}

else

{

if (D.3806)

{

x.j.data = (void * restrict) __builtin_realloc ((void *) x.j.data, 16);

}

}

D.3794 = (integer(kind=4)[0:] * restrict) x.j.data;

L.2:;

}

S.2 = 0;

while (1)

{

if (S.2 > 3) goto L.3;

(*D.3794)[(S.2 + D.3800) + D.3795] = A.1[S.2];

S.2 = S.2 + 1;

}

L.3:;

}

}

“scalarized” assignmentReallocation on assignment

BCS Meeting 27th September 2018

if ((integer(kind=4)[0:] * restrict) x.j.data == 0B)
{

x.j.data = (void * restrict) __builtin_malloc (16);
x.j.dtype = {.elem_len=4, .rank=1, .type=1};

}
else

{
if (D.3806)

{
x.j.data = (void * restrict) __builtin_realloc ((void *) x.j.data, 16);

}
}

S.2 = 0;
while (1)

{
if (S.2 > 3) goto L.3;
(*D.3794)[(S.2 + D.3800) + D.3795] = A.1[S.2];
S.2 = S.2 + 1;

}
L.3:;

}

Descriptors

• The array gfortran descriptor was designed at a time when memory usage was
still an issue. This limited max dimensions to 7 and no allowance was made for
pointers to components of arrays of derived types; array_ptr =>
myderived(:)%component

• The present array descriptors, although recently partially upgraded to fix
above and for eventual F2018 CFI compliance, are still defective in one
important respect: The ‘dim’ triplet should be {lbound,sm,extent} and not
{lbound,stride,ubound}

• It appears that F2003 Parameterized Derived Types need a descriptor, similar
to that of polymorphic entities: (Bug 82649 - (PDT) Invalid error for assumed
parameters in ALLOCATE typespec
➢ Allocate (matrix(rk, *, *) :: o_matrix) fails to pick up the declared LEN parameter
➢ Both KIND and LEN parameters are fields in array elements

BCS Meeting 27th September 2018

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82649

F20xx compliance

• gfortran was originally targeted to be a fully compliant F95 compiler with legacy
g77 support. By ~2006/7 or so, this had been achieved. (primarily Paul Brook &
Andy Vaught)

• F2003 compliance has more or less been achieved. The most significant defects
are that the implementation of Parameterized Derived Types is only partially
compliant, as described previously, and finalization still does not occur in all
mandated cases.

• F2008 compliance is close. There are still some bugs in polymorphic assignment,
especially where allocatable components or deferred string length are involved.
A lot of the missing features in
http://www.fortran.bcs.org/2017/fortran_2003_2008_compiler_support.pdf
are now implemented.

• F2018 is primarily awaiting implementation of C/Fortran Interoperability
features.

BCS Meeting 27th September 2018

http://www.fortran.bcs.org/2017/fortran_2003_2008_compiler_support.pdf

BCS Meeting 27th September 2018

Ian D Chivers & Jane Sleightholme – November ’17
F2003 FEATURES

7.214 8.4.0 2.0.3 18.0 16.415.1.5 6.1 8.8

PDTs and Finalization need work

PDTs and Finalization need work

Language Features (i)

BCS Meeting 27th September 2018

2 Ian D Chivers & Jane Sleightholme – November ’17 (gfortran 7.2 and Intel 18.0)

Language Features (ii)

BCS Meeting 27th September 2018

Language Features (iii)

Diagnostic Comparisons

BCS Meeting 27th September 2018

• 2 x Xeon E5-2643 3.30GHz
quad core + 64-bit Linux
Mint 17.1

• gfortran doing well among
those without Automatic
Parallelization turned on.

• Equals Intel when linked to
Intel library

• “Autoparallelization settings
are not used on any other
compilers because we found
that they produced no
significant performance
benefits on this benchmark
set. ”

Polyhedron Benchmarks

• gfortran benefits from the optimization provided by gcc back-end.
• Front-end has some optimization passes; e.g. to avoid library calls.

BCS Meeting 27th September 2018

Coarray support

• Native support currently only supports a single image.
fcoarry=single

• Multiple image coarrays currently supported via MPI. Requires
OpenCoarray library and runtime wrapper to be installed.

fcoarray=lib

• An effort was made to include OpenMPI and OpenCoarrays in
the gcc build but it has been recently decided to drop this
because of maintenance and licensing issues.

• Work is underway to provide alternative implementation,
which will provide native support: e.g.

fcoarray=pthread images=10

BCS Meeting 27th September 2018

•aarch64*-*-*

•alpha*-*-*

•amd64-*-solaris2.10

•arm-*-eabi

•avr

•Blackfin

•DOS

•*-*-freebsd*

•h8300-hms

•hppa*-hp-hpux*

•hppa*-hp-hpux10

•hppa*-hp-hpux11

•*-*-linux-gnu

•i?86-*-linux*

•i?86-*-solaris2.10

•ia64-*-linux

•ia64-*-hpux*

•*-ibm-aix*

•iq2000-*-elf

•lm32-*-elf

•lm32-*-uclinux

•m32c-*-elf

•m32r-*-elf

•m68k-*-*

•m68k-uclinux

•microblaze-*-elf

•mips-*-*

•nds32le-*-elf

•nds32be-*-elf

•nvptx-*-none

•powerpc*-*-*

•powerpc-*-darwin*

•powerpc-*-elf

•powerpc*-*-linux-

gnu*

•powerpc-*-netbsd*

•powerpc-*-eabisim

•powerpc-*-eabi

•powerpcle-*-elf

•powerpcle-*-eabisim

•powerpcle-*-eabi

•riscv32-*-elf

•riscv32-*-linux

•riscv64-*-elf

•riscv64-*-linux

•s390-*-linux*

•s390x-*-linux*

•s390x-ibm-tpf*

•*-*-solaris2*

•sparc*-*-*

•sparc-sun-solaris2*

•sparc-sun-solaris2.10

•sparc-*-linux*

•sparc64-*-solaris2*

•sparcv9-*-solaris2*

•c6x-*-*

•tilegx-*-linux*

•tilegxbe-*-linux*

•tilepro-*-linux*

•visium-*-elf

•*-*-vxworks*

•x86_64-*-*, amd64-*-*

•x86_64-*-solaris2.1[0-9]*

•xtensa*-*-elf

•xtensa*-*-linux*

•Microsoft Windows

•*-*-cygwin

•*-*-mingw32

•OS/2

•all ELF targets

(SVR4, Solaris 2, etc.)

Hosts and Targets

See the GFortran wiki for
advice on binaries:
https://gcc.gnu.org/wiki/G
Fortran

Note that the Windows
bash shell supports
gfortran-5.4.0

BCS Meeting 27th September 2018

https://gcc.gnu.org/install/specific.html#aarch64-x-x
https://gcc.gnu.org/install/specific.html#alpha-x-x
https://gcc.gnu.org/install/specific.html#amd64-x-solaris210
https://gcc.gnu.org/install/specific.html#arm-x-eabi
https://gcc.gnu.org/install/specific.html#avr
https://gcc.gnu.org/install/specific.html#bfin
https://gcc.gnu.org/install/specific.html#dos
https://gcc.gnu.org/install/specific.html#x-x-freebsd
https://gcc.gnu.org/install/specific.html#h8300-hms
https://gcc.gnu.org/install/specific.html#hppa-hp-hpux
https://gcc.gnu.org/install/specific.html#hppa-hp-hpux10
https://gcc.gnu.org/install/specific.html#hppa-hp-hpux11
https://gcc.gnu.org/install/specific.html#x-x-linux-gnu
https://gcc.gnu.org/install/specific.html#ix86-x-linux
https://gcc.gnu.org/install/specific.html#ix86-x-solaris210
https://gcc.gnu.org/install/specific.html#ia64-x-linux
https://gcc.gnu.org/install/specific.html#ia64-x-hpux
https://gcc.gnu.org/install/specific.html#x-ibm-aix
https://gcc.gnu.org/install/specific.html#iq2000-x-elf
https://gcc.gnu.org/install/specific.html#lm32-x-elf
https://gcc.gnu.org/install/specific.html#lm32-x-uclinux
https://gcc.gnu.org/install/specific.html#m32c-x-elf
https://gcc.gnu.org/install/specific.html#m32r-x-elf
https://gcc.gnu.org/install/specific.html#m68k-x-x
https://gcc.gnu.org/install/specific.html#m68k-uclinux
https://gcc.gnu.org/install/specific.html#microblaze-x-elf
https://gcc.gnu.org/install/specific.html#mips-x-x
https://gcc.gnu.org/install/specific.html#nds32le-x-elf
https://gcc.gnu.org/install/specific.html#nds32be-x-elf
https://gcc.gnu.org/install/specific.html#nvptx-x-none
https://gcc.gnu.org/install/specific.html#powerpc-x-x
https://gcc.gnu.org/install/specific.html#powerpc-x-darwin
https://gcc.gnu.org/install/specific.html#powerpc-x-elf
https://gcc.gnu.org/install/specific.html#powerpc-x-linux-gnu
https://gcc.gnu.org/install/specific.html#powerpc-x-netbsd
https://gcc.gnu.org/install/specific.html#powerpc-x-eabisim
https://gcc.gnu.org/install/specific.html#powerpc-x-eabi
https://gcc.gnu.org/install/specific.html#powerpcle-x-elf
https://gcc.gnu.org/install/specific.html#powerpcle-x-eabisim
https://gcc.gnu.org/install/specific.html#powerpcle-x-eabi
https://gcc.gnu.org/install/specific.html#riscv32-x-elf
https://gcc.gnu.org/install/specific.html#riscv32-x-linux
https://gcc.gnu.org/install/specific.html#riscv64-x-elf
https://gcc.gnu.org/install/specific.html#riscv64-x-linux
https://gcc.gnu.org/install/specific.html#s390-x-linux
https://gcc.gnu.org/install/specific.html#s390x-x-linux
https://gcc.gnu.org/install/specific.html#s390x-ibm-tpf
https://gcc.gnu.org/install/specific.html#x-x-solaris2
https://gcc.gnu.org/install/specific.html#sparc-x-x
https://gcc.gnu.org/install/specific.html#sparc-sun-solaris2
https://gcc.gnu.org/install/specific.html#sparc-sun-solaris210
https://gcc.gnu.org/install/specific.html#sparc-x-linux
https://gcc.gnu.org/install/specific.html#sparc64-x-solaris2
https://gcc.gnu.org/install/specific.html#sparcv9-x-solaris2
https://gcc.gnu.org/install/specific.html#c6x-x-x
https://gcc.gnu.org/install/specific.html#tilegx-x-linux
https://gcc.gnu.org/install/specific.html#tilegxbe-x-linux
https://gcc.gnu.org/install/specific.html#tilepro-x-linux
https://gcc.gnu.org/install/specific.html#visium-x-elf
https://gcc.gnu.org/install/specific.html#x-x-vxworks
https://gcc.gnu.org/install/specific.html#x86-64-x-x
https://gcc.gnu.org/install/specific.html#x86-64-x-solaris210
https://gcc.gnu.org/install/specific.html#xtensa-x-elf
https://gcc.gnu.org/install/specific.html#xtensa-x-linux
https://gcc.gnu.org/install/specific.html#windows
https://gcc.gnu.org/install/specific.html#x-x-cygwin
https://gcc.gnu.org/install/specific.html#x-x-mingw32
https://gcc.gnu.org/install/specific.html#os2
https://gcc.gnu.org/install/specific.html#elf
https://gcc.gnu.org/wiki/GFortran

Professional support for gfortran

• Since Paul Brook disengaged himself from supporting gfortran, it
has had no full-time professional involvement.

• The maintainers are primarily volunteers, most of whom are
motivated initially by the need for some missing feature or other.
Most often, the maintainers are chemists, physicists or engineers
who lack some (a lot?) of the required expertise.

• The lack of a development plan shows. Frankly, there are quite
significant chunks, especially in trans-*.c, that have grown like
Topsy and are consequently a bit of a mess.

• We are very grateful for the help received from gcc maintainers but
some dedicated, full-time (, professional) support is needed.

• Ideas on how to obtain funding for this support?

BCS Meeting 27th September 2018

BCS Meeting 27th September 2018

Benefits of continuing Fortran standardisation survey:
interim results Anton Shterenlikht Standards Officer, BCS Fortran Specialist Group

On balance, the responses are positive for gfortran. However, it is clear that the

versions being used in the field are lagging far behind the development version
9.0.0.

Some quite considered remarks point out that bugginess in new features

is shared between nearly all brands but the fact that they don't have the

same bugs makes life difficult for those wanting to use them! (see third
paragraph on next slide)

Of bugs in features that were mentioned explicitly, deferred character length

comes out on top of the list. Bizarrely, though, more people claim to use PDTs

than deferred character length and yet there are no complaints about the poor
implementation in gfortran (mea culpa).

Maintainers can probably draw some development priorities from the

document. It is clear, though, that bug fixing is the highest priority, as is
obvious from the number of gfortran Problem Reports.

BCS Meeting 27th September 2018

Benefits of continuing Fortran standardisation survey: interim results
Some comments that stood out:

"As of today the only two things I can think of that will save Fortran is for Intel to follow
NVIDIA/Portland Groups example and release a community edition (Ie free) version of their
compiler and for the NVIDIA backed flang project to supplant gfortran as the ”open source”
compiler. Just my 2 cents"

"There is no standard for the Fortran modules file format. This is terrible. …snip… The Fortran
standards committee should have adressed this horribly lax policy a long time ago. Long overdue."
(I can only agree. However, the array descriptor ABIs are not compatible either!)

"Gfortran 5.4.0, Nagfor 6207, ifort 17.0.5 None of these compilers supports the full (up to 2008)
standard, and it is frustrating using trial and error to find the subset of useful features that they
do all support. All three claim to support parts of the standard which they actually don’t.”

"gfortran - yes (although it would be nice if coarrays were better integrated, i.e. not having to use
the opencoarray library explicitly).“

"Fortran is a dead language and its use should be banned by an act of Parliament."
(Well, I suppose that it would make a change from Brexit ☺)

