
Hybrid Fortran 
High Performance & Productivity for GPU Numerics

Michel Müller
Postdoctoral Researcher ETH Zurich
Dr. Eng., Tokyo Institute of Technology
MSc. ETH in Electrical Engineering and Information Technology

2018-09-27

Talk

�2

Outline
1. Introduction
2. Method
3. Application
4. Performance
5. Method Comparison
6. Conclusion

�3

Increase in computational performance allows increasing grid
resolution.

During last decade this allows resolution of increasingly
small cloud formations in dynamical core.

Typically applied finite-volume and finite-difference based
discretization methods are bottlenecked by memory
bandwidth in the dynamics.

➡ Hardware architectures with high memory bandwidth are
seeked.

1. Introduction

NWP and Computational Performance

�41. Introduction

Data Source: https://en.wikipedia.org/wiki/Transistor_count,
Visualization by Max Roser (CC-BY-SA)

Moore’s Law still holds, …

�51. Introduction

… however Dennard scaling does not.

Dennard scaling: Power density of micro transistors
proportional to area.
➡ Clock frequency/single threaded perf. scales inverse

proportionally to transistor size
Since 90nm process technology (~2004-2005), Dennard
scaling does not hold anymore.
Leakage currents increasingly limit advancements in single
threaded performance.

�61. Introduction

Latency- versus Throughput Oriented Processing

Latency: Time elapsed between initiation and completion of a
task.
Throughput: Total amount of work completed per unit time.

Due to end of Dennard scaling:
➡ shift from latency-oriented processor design to throughput-

oriented
➡ applications only profit when adapted accordingly

�7

GPU Computing

Graphics Processing Units (GPUs) are a popular type of
throughput-oriented processors.

Today has many applications outside of graphics.

Applications need to be highly parallelizeable, as GPUs
have a high latency to complete a single task compared to
CPUs.

1. Introduction

GPUCPU

Kernel 1

�8

GPU Computing

1. Introduction

Host
Memor

Device
Memory

Serial Code

119 GB/s 720 GB/s

11 GB/s

Serial Code

Kernel 1

grid

thread block

thread

High memory bandwidth
Support for branching, 64bit FP
Fine-grained parallelism
Memory access performance highly sensitive
to memory layout
Different involved memories require
management

�9

What is ASUCA?
``Asuca is a System based on a Unified Concept for
Atmosphere''
fully compressible, non-hydrostatic weather prediction model

regional scale - as depicted in Figure 1.2
one of main operational forecast models in Japan, in
production since 2014
spatial discretization: finite-volume method on Arakawa-C-
type rectangular grid
time discretization:

third-order Runge-Kutta based iteration scheme for
advection and Coriolis force
time-splitting method, employing secondary third-order
Runge-Kutta iteration with short time step for sound- and
gravity waves

vertical-only models for parametrization of radiation,
planetary boundary layer and surface physical processes

1. Summary: Introduction

ASUCA NWP Model

1. Introduction 21

Figure 1.2: ASUCA’s model simulation boundaries.

model is based on general coordinates, allowing transformations for both latitude
/ longitude- as well as Lambert conformal conic projections. By convention, its
horizontal dimensions are named I and J, with K being the vertical dimension
[5] [51].

Dynamical processes are solved by using the finite-volume method. Since var-
ious physical processes require a higher vertical resolution, a non-homogeneous
vertical cell separation order of 103m is applied, in contrast to a 2-kilometer-
resolution applied in the horizontal domain. Since in an explicit method the
smallest spatial dimension determines the time step, a horizontally-explicit verti-
cally-implicit (HEVI) time stepping method is employed. Atmospheric waves,
advection as well as the Coriolis acceleration are solved using a time splitting
method as proposed by Wicker and Skamarock in 2002, combining a third-order
Runge-Kutta time integration scheme using a long time step for slower pro-
cesses (advection, Coriolis) with a secondary third-order Runge-Kutta iteration
for sound- and gravity waves [52]. Vertical advection of water substances (i.e.
precipitation) is solved using a separate time step for each column, based on the
Courant-Friedrichs-Lewy convergence condition [6] [53]. ASUCA is structured as
a dynamical core interfacing with physical processes through tendency variables,
as is common in NWP (see also the discussion in Section 1.3.2).

ASUCA’s dynamical core is bounded by memory bandwidth, as is common
for finite-volume and finite-di↵erence based spatial discretizations for dynamical
systems. It also constitutes a significant majority of the runtime in operational
settings [54] [55]. As described in Section 1.3.4, GPUs are thus an attractive
target architecture, with a memory bandwidth that is typically 5 to 7 times

Figure 1.2: ASUCA’s model
simulation boundaries

�10

GPUs for Numerical Weather Prediction

1. Introduction

GPUs offer high memory bandwidth, which is in high demand in NWP.

➡ GPUs are an attractive target architecture.
Major problems to solve for existing regular grid NWP codes:

Memory layout needs change
Code granularity in physical processes too coarse for GPU

Existing methods to solve these problems:
Only apply GPU to dynamical core.
Rewrite Fortran code using C++ templates for architecture
specialization.
Code divergence between CPU and GPU to solve granularity issues.

➡ Unsatisfactory to maintain a unified, coherent and efficient code base
in Fortran (the standard in NWP)

➡ For ASUCA, a solution with none of these drawbacks was sought.

�11

2. Method

Granularity Abstraction
Memory Layout &
Regions
Code Transformation

Introduction Method Application Performance Method
Comparison Conclusion

new granularity abstraction and memory layout
transformation method
applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required
for a full scale run with real data
method unique in increasing productivity for porting
coarse-grained codes to GPU

Contributions

Goal
✓ GPU port for “ASUCA” NWP model in Fortran with

minimal code divergence / minimal learning

✓ paradigm shift towards throughput oriented design
✓ GPUs attractive for NWP (high mem. bandwidth)
✓ productivity and maintainability of GPU approaches

lacking

Background

Motivation
✓ Many of today’s NWP- and climate models cannot

make efficient use of high-throughput architectures. We
want to find and prove easily adoptable approach.

�122. Method

Assumptions for Design

Mainly used data structure is Fortran arrays of different
dimensions and data types.

Kernels are data parallel.

Existing inter-node / inter-GPU communication code can
be reused.

�132. Method

ASUCA Code Structure

simulation
 for t ∈ [0,tend]:

routine

loop repeating
.. statements ..
for each x ∈ [a, b]

Legend

physics run
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

shortwave rad.
 for k ∈ [1,nz]:
 .. pointwise process ..

surf. flux
 .. pointwise process ..

call

for x ∈ [a, b]:
 .. statements ..

p.b. phi calc
 .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

➡ Physics difficult to port
Applying GPU only to dynamical core
requires expensive host-device-
communication for every timestep

�142. Method

Key Problems
1. Code Granularity

simulation
 for t ∈ [0,tend]:

physics run
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

shortwave rad.
 for k ∈ [1,nz]:
 .. pointwise process ..

surf. flux
 .. pointwise process ..

p.b. phi calc
 .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

coarse code granularity  
→GPU unfriendly, performant on CPU

fine code granularity  
→GPU friendly

Definition of granularity:
The amount of work done by one thread.

fine-grained: low amount of work per thread
coarse-grained: high amount of work per thread

Two types of granularity:
a) runtime defined
b) code defined

�152. Method

Key Problems

simulation
 for t ∈ [0,tend]:

physics run
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

shortwave rad.
 for k ∈ [1,nz]:
 .. pointwise process ..

surf. flux
 .. pointwise process ..

p.b. phi calc
 .. pointwise process ..

…
dycore…

Performant layout on CPU: Keep fast
varying vertical domain in cache → k-first 
Example stencil in original code: 
A_out(k,i,j) = A(k,i,j) + A(k,i-1,j) …
GPU: Requires i-first or j-first for
coalesced access

2. Memory Layout
nx

ny

nx nx nx

…
radiation

…
surface

planetary boundary

…
…
…

�162. Method

Hybrid Fortran

Main ideas:

Allow efficient many-core GPU port while maintaining
multi-core CPU compatibility
Delegate parallelization boilerplate to framework
Allow multiple parallelization granularities for the same
code
Transform memory layout for each target architecture

�172. Method

do i = 1, nx 
 do j = 1, ny 
 ! ..pointwise code..

@parallelRegion{ 
 domName(i,j), domSize(nx,ny), appliesTo(CPU) 
} 
! ..pointwise code..

allows multiple
parallelization
granularities

explicit parallelization -
orthogonal to
sequential loops

Parallelization & Granularity Abstraction

Creates CUDA Fortran, OpenACC or CPU
multicore-OpenMP based parallelization,
depending on backend.

�182. Method

Example Physical Process

simulation
 for t ∈ [0,tend]:

physics run
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

shortwave rad.
 for k ∈ [1,nz]:
 .. pointwise process ..

surf. flux
 .. pointwise process ..

routine

loop repeating
.. statements ..
for each x ∈ [a, b]

Legend

call

for x ∈ [a, b]:
 .. statements ..

p.b. phi calc
 .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

example reference code from
surface flux

data parallelism not exposed at
this layer of code

➡ coarse-grained parallelization

�� Michel Müller and Takayuki Aoki

This shows the specification of the local module data object dens_ptb_bnd
(density perturbation in the boundary layer) as well as the external module data
objects dens_ref_f (reference density) and dens_ptb_damp (density perturba-
tion in ASUCA grid).

The autoDom attribute is used to delegate the dimensions setup to the
data object specification parser (which gathers this information in a separate
pass from the source modules, here ref and svar), rather than having the user
specify the dimensions explicitly again in the @domainDependant construct.
The attributes accPP and domPP are employed to specify the macro names
used to implement the dimension ordering for accesses and specification parts,
respectively. These macros wrap all dimension lists in access expressions and
specifications of respective data objects in the generated code. When accPP and
domPP attributes are omitted, default macro names are used. In case of Listing
�.� we use explicit macro names for the dynamical core since the default macros
are already used with di�erent assumptions for the physical processes (see the
paragraph on “Dimensionality Changes” below).

Device Data Region Similarly to OpenACC, in Hybrid Fortran we implement
data regions by adding state attributes to data objects. The present attribute,
shown in Listing �.�, indicates that the respective objects are located on the
device in case of GPU compilation. Analogous transferHere attributes are used
in the main simulation routine in order to instruct Hybrid Fortran to implement
the memory copy operations to- and from the device, once at the beginning
and end of the simulation. For dummy variables with specified intent, Hybrid
Fortran will use the Fortran intent information to determine the correct copy
operation, which minimizes the potential for bugs in comparison to OpenACC’s
explicit copyIn, copyOut and copy clauses. Halo region updates, required for
every timestep, are implemented explicitly in code sections guarded from CPU
compilation.

Dimensionality Changes Due to the compile-time defined parallelization
granularity, discussed in Section �.�, it is necessary to modify the dimensionality
of data objects in certain cases in the source generation. This requires hints from
the framework user. Consider the following surface flux code snippet:

Listing �.�. Surface flux code snippet.
l t = t i l e _ l a n d
i f (t l c v r (l t) > � .� _r_size) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex (l t) , tauy_ti le_ex (l t) &
&)

u_f (l t) = s q r t (s q r t (taux_ti le_ex (l t) ** � + tauy_ti le_ex (l t) ** �))
e l s e

taux_ti le_ex (l t) = � .� _r_size
tauy_ti le_ex (l t) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f

�192. Method

Example Physical Process Using Hybrid Fortran

pointwise code reused
code transformed to apply fine-
grained parallelism

appliesTo clause to specify
parallelization target
call graph transformed globally to
expose data parallelism at
required granularity

simulation
 for t ∈ [0,tend]:routine

loop repeating
.. statements ..
for each x ∈ [a, b]

Legend

physics run

shortwave rad. 

 for k ∈ [1,nz]:
 .. pw. proc.

surf. flux

 .. pw. proc.

call

for x ∈ [a, b]:
 .. statements ..

CPU

i,j ∈
[1,nx],
[1,ny]

GPU

i,j ∈
[1,nx],
[1,ny]

GPU

i,j ∈
[1,nx],
[1,ny]

p.b. phi calc

 .. pw. proc.

GPU

i,j ∈
[1,nx],
[1,ny]

execute
.. statements ..
in parallel for each
i,j ∈ [1,nx], [1,ny] 
if the executable is
compiled for CPU.
Otherwise run
.. statements.. a single
time.

CPU

i,j ∈
[1,nx],
[1,ny]

..
st

at
em

en
ts

 ..

…

…

dycore…

radiation

surface

planetary boundary

……
…

Hybrid Fortran: High Productivity GPU Porting ��

! . . . s ea t i l e s code and v a r i a b l e summing omitted

Since this process is defined inside the call graph of the physics kernel, as
shown in Figure �, the relevant �D- and �D grid point values are already sliced
and passed in as scalars or �D-arrays, that is, data parallelism is not exposed
at this level. Hybrid Fortran allows implementing this as a fine grained kernel
(as outlined in Figure �) without modifying the computational user code, as
demonstrated in the following snippet:

Listing �.�. Surface flux code snippet with Hybrid Fortran.

@domainDependant{domName(i , j) , domSize (nx , ny) , a t t r i b u t e (autoDom , pre sent) }
t l c v r , taux_ti le_ex , tauy_ti le_ex , u_f
@end domainDependant

@p ar a l l e lR eg i on { appl ie sTo (GPU) , domName(i , j) , domSize (nx , ny) }
l t = t i l e _ l a n d
i f (t l c v r (l t) > � .� _r_size) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex (l t) , tauy_ti le_ex (l t) &
&)

u_f (l t) = s q r t (s q r t (taux_ti le_ex (l t) ** � + tauy_ti le_ex (l t) ** �))
e l s e

taux_ti le_ex (l t) = � .� _r_size
tauy_ti le_ex (l t) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f
! . . . s ea t i l e s code and v a r i a b l e summing omitted
@end p a r a l l e l R e g i o n

Using our parallelization DSL to provide additional dimensionality informa-
tion, Hybrid Fortran is able to rewrite this code into a �D kernel. Dimensions
missing from the user code are inserted at the beginning of the dimension lists in
access expressions and data object specifications. As an example, the expression
u_f(lt) is converted to u_f(AT(i,j,lt)), employing the default ordering macro
already mentioned in the paragraph “Storage Order”. Dimensions are extended
whenever there is a match found for domName or domSize information between
data objects and parallel regions within the same routine or in routines called
within the call graph of the same routine. It is therefore necessary for Hybrid
Fortran to gather global information about the application before implementing
each routine.

� Code Transformation Method

In this section we discuss code transformation method involved in implementing
Hybrid Fortran’s characteristics described earlier. This process is applied trans-
parently for the user, i.e. it is applied automatically by the means of a provided
common Makefile�. Figure � gives an overview of the process and the components
� See also the “Getting Started” section in https://github.com/muellermichel/Hybrid-

Fortran/blob/v�.��rc��/doc/Documentation.pdf.

�202. Method

Data specifications:

autoDom: extend existing data domain specification with parallel domain given by
@domainDependant directive.

domName, domSize attributes specify horizontal extension of data domain
present: data is already present on device.

requires counterpart specification at data region boundaries with transferHere attribute

Data Specifications

Hybrid Fortran: High Productivity GPU Porting ��

! . . . s ea t i l e s code and v a r i a b l e summing omitted

Since this process is defined inside the call graph of the physics kernel, as
shown in Figure �, the relevant �D- and �D grid point values are already sliced
and passed in as scalars or �D-arrays, that is, data parallelism is not exposed
at this level. Hybrid Fortran allows implementing this as a fine grained kernel
(as outlined in Figure �) without modifying the computational user code, as
demonstrated in the following snippet:

Listing �.�. Surface flux code snippet with Hybrid Fortran.

@domainDependant{domName(i , j) , domSize (nx , ny) , a t t r i b u t e (autoDom , pre sent) }
t l c v r , taux_ti le_ex , tauy_ti le_ex , u_f
@end domainDependant

@p ar a l l e lR e g i on { appl ie sTo (GPU) , domName(i , j) , domSize (nx , ny) }
l t = t i l e _ l a n d
i f (t l c v r (l t) > � .� _r_size) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex (l t) , tauy_ti le_ex (l t) &
&)

u_f (l t) = s q r t (s q r t (taux_ti le_ex (l t) ** � + tauy_ti le_ex (l t) ** �))
e l s e

taux_ti le_ex (l t) = � .� _r_size
tauy_ti le_ex (l t) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f
! . . . s ea t i l e s code and v a r i a b l e summing omitted
@end p a r a l l e l R e g i o n

Using our parallelization DSL to provide additional dimensionality informa-
tion, Hybrid Fortran is able to rewrite this code into a �D kernel. Dimensions
missing from the user code are inserted at the beginning of the dimension lists in
access expressions and data object specifications. As an example, the expression
u_f(lt) is converted to u_f(AT(i,j,lt)), employing the default ordering macro
already mentioned in the paragraph “Storage Order”. Dimensions are extended
whenever there is a match found for domName or domSize information between
data objects and parallel regions within the same routine or in routines called
within the call graph of the same routine. It is therefore necessary for Hybrid
Fortran to gather global information about the application before implementing
each routine.

� Code Transformation Method

In this section we discuss code transformation method involved in implementing
Hybrid Fortran’s characteristics described earlier. This process is applied trans-
parently for the user, i.e. it is applied automatically by the means of a provided
common Makefile�. Figure � gives an overview of the process and the components
� See also the “Getting Started” section in https://github.com/muellermichel/Hybrid-

Fortran/blob/v�.��rc��/doc/Documentation.pdf.

�212. Method

Transformed Code

2. A Method for High Productivity GPU Porting 34

! ... further tile variables omitted
end if
! ... sea tiles code and variable summing omitted
@end parallelRegion

Using our parallelization DSL to provide additional dimensionality informa-
tion, Hybrid Fortran is able to rewrite this code into a 2D kernel. Dimensions
missing from the user code are inserted at the beginning of the dimension lists in
access expressions and data object specifications. As an example, the expression
u_f(lt) is converted to u_f(AT(i,j,lt)), employing the default ordering macro
already mentioned in the paragraph “Storage Order”. Dimensions are extended
whenever there is a match found for domName or domSize information between
data objects and parallel regions within the same routine or in routines called
within the call graph of the same routine. It is therefore necessary for Hybrid
Fortran to gather global information about the application before implementing
each routine.

2.4 Transformed Code

Revisiting Listing 2.5, the following code is generated when applying Hybrid
Fortran with the OpenACC backend:

Listing 2.6: Surface flux code snippet after conversion with OpenACC backend.

!$acc kernels deviceptr (taux_tile_ex) deviceptr (tauy_tile_ex) &
!$acc& deviceptr (tlcvr) deviceptr (u_f)
!$acc loop independent vector(CUDA_BLOCKSIZE_Y)
outerParallelLoop0: do j=1,ny
!$acc loop independent vector(CUDA_BLOCKSIZE_X)

do i=1,nx
! *** loop body *** :

lt = tile_land
if (tlcvr(AT(i,j,lt))> 0.0 _r_size) then

call sf_slab_flx_land_run (&
! ... inputs and further tile variables omitted
& taux_tile_ex(AT(i,j,lt)), tauy_tile_ex(AT(i,j,lt))

,! &
&)

u_f(AT(i,j,lt))= sqrt(sqrt(taux_tile_ex(AT(i,j,lt))** 2 + &
& tauy_tile_ex(AT(i,j,lt))** 2))

else
taux_tile_ex(AT(i,j,lt))= 0.0 _r_size
tauy_tile_ex(AT(i,j,lt))= 0.0 _r_size
! ... further tile variables omitted

end if
! ... sea tiles code and variable summing omitted

end do
end do outerParallelLoop0
!$acc end kernels

Device data is interoperable with the CUDA Fortran backend, thus device
pointers are used instead of passing the management to OpenACC. OpenACC

Example surface flux kernel transformed with OpenACC backend.

OpenACC parallelization

parallel loops

data specifications

horizontal domain
extension of data

storage
ordering macro

line breaks

block size macros

�222. Method

Transformation Process
2. A Method for High Productivity GPU Porting 38

maketransform

parse

F90	Fortran

Hybrid Sources

global
information

executable

analyze

F90	Fortranimplemented
Fortran

hybrid file python

GNU Makelegend

file with
CPU+GPU
version

Build Dependencies

Build Configuration

user facing

Macro Definitions

global information -
applied to architecture

output

input
machine
facing

Figure 2.3: Hybrid Fortran software components and build workflow.

.f90 Standard Fortran source files without any preprocessing step necessary.
Such files are directly passed to the specified compiler (see also “Build
Configuration”).

.F90 Standard Fortran source files containing macro definitions. Files of this
type are passed to a gcc -E based preprocessor, with some additional
changes applied in order to allow for multi-line macros within Fortran files.

.h90 Hybrid Fortran source files - i.e. Fortran source files that also contain the
Hybrid Fortran language extensions. These files do not contain any other
macros.

.H90 Fortran source files that contain both Hybrid Fortran language extensions
as well as macros. This distinction gives greater flexibility to the user by
allowing Hybrid Fortran kernels to be generated first before being passed
to the code transformation process.

Build Configuration The build configuration is repeated for each of the tar-
get architectures. In its most basic form it consists of a file with GNU Makefile
syntax, defining the compiler and linker, as well as their flags, involved in apply-
ing the final compilation step in order to build executables.

�232. Method

Callgraph Analysis
2. A Method for High Productivity GPU Porting 41

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.5: Callgraph coloring on CPU.

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.6: Callgraph coloring on GPU.

2. A Method for High Productivity GPU Porting 41

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.5: Callgraph coloring on CPU.

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.6: Callgraph coloring on GPU.

CPU Version GPU Version

2. A Method for High Productivity GPU Porting 41

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.5: Callgraph coloring on CPU.

simulation

Legend

lateral/upper boundary
damp.

physics run

shortwave rad.

surf. flux

call

p.b. phi calc

…dycore

…
radiation

…surface
planetary boundary…

routine
outside
 region
routine
with
 region

routine
inside
 region

Figure 2.6: Callgraph coloring on GPU.

�242. Method

Limitations

code for programmable caches on GPU (“shared
memory”, “texture memory”) is not generated by tool.

relies on standard subroutines, e.g. Fortran function
construct not supported for code running on GPU.

�25

Introduction Method Application Performance Method
Comparison Conclusion

✓ new granularity abstraction and memory layout
transformation method
applied to ASUCA, resulting in >3x speedup in
kernel performance and >2x reduction in processors
required for a full scale run with real data
method unique in increasing productivity for porting
coarse-grained codes to GPU

Contributions 3. Application
Hybrid ASUCA
Implementation
Productivity Results

3. Application to Numerical Weather Prediction 54

GPU
Time

assimilated real
weather data

setup
long time step

Runge Kutta (n = 3)

short time step

Runge Kutta (n = 3)

advection

coriolis force, curvature & damping

precipitation

horizontal pressure gradient

vertical pressure gradient,  
gravity (1D-Helmholtz)

potential temperature & pressure update

lateral boundary operations

lateral boundary operations

lateral boundary operations

cloud microphysical processes

3D to 1D interpolation, radiation-, planetary boundary & surface processes

initial data

output output data

MPI communicate

h. pressure data

v. pressure data

T & p data

precipitation data

tendency data

tendency data

MPI communicate

MPI communicate

MPI communicate

MPI communicate

MPI communicate

Host

Legend

Process
Color shading indicates
computational intensity due
to repetition

Data
Host / device
boundary

Jump back
(repetition of
loop)

Figure 3.1: Overview of simulated processes in Hybrid ASUCA when run on
GPUs.

Legend

Process

Color shading
indicates
computational
intensity due to
repetition

Data
Host / device
boundary

Jump back
(repetition of
loop)

�273. Application

Parallelization

nxnode

nynode nynode

CPU GPU

i

j

nxnode

nx

ny

Legend

CPU thread & marching
direction

grid

GPU thread block

MPI rank domain

�283. Application

Dynamical Core
ASUCA’s dynamical core contains many “tight parallel loops”, i.e. fine-grained parallelism.
CUDA Fortran compiler was most stable during development.
➡ Chosen as main backend.
➡ Transformed code must have separate routines per kernel.

➡ To facilitate tight parallel loops, Hybrid Fortran employs routine splitting.
➡ Existing code becomes compatible with CUDA Fortran backend.2. A Method for High Productivity GPU Porting 48

is composed of

Legend

Unchanged
Model
Object

Routine 1

Specification
Region

Early Exit
Region

Generic
Region

Generic
Region

Call Region
to Kernel 1

Call Region
to Kernel 2

Kernel
Routine 1

Specification
Region

Parallel
Region 1

Kernel
Routine2

Specification
Region

Parallel
Region 2

Copied
Model
Object

Synthesized
Model
Object

Moved Model
Object

Figure 2.11: Example of an intermediate global application model after routine
splitting has been applied.

and host routines outside of the device data region, each routine model is
copied, including all its member regions, and assigned a host-only Fortran
implementation class (see also the implementation class hierarchy described
below). All routines defined in hybrid sources thus remain compatible with
host-only callers. In order to distinguish between the parallelized versions
and the host-only version of a routine, the former are renamed with a prefix
in the routine name, including all their respective calls in the application
model.

2. Other than Hybrid Fortran and OpenACC, CUDA Fortran distinguishes
between di↵erent types of routines. GPU kernels are implemented as
global subroutines, routines called within kernels as device subroutines
(see the earlier Listing 2.8 as an example). In order to map from user
code routines to CUDA Fortran global and device routines (as well as
the host code setting up and calling each kernel), and to support multiple
kernels per routine, Hybrid Fortran employs a routine splitting method.
Reconsidering the sample application model given in Section 2.5.5, Figure
2.11 illustrates the model composition graph for “Routine 1” after it has
been split for a CUDA Fortran based implementation. Kernel routines are
synthesized and given a copy of the original specification region. Parallel
regions are moved to the kernel regions and replaced with synthesized call
regions for the respective kernels in the original host routine. The newly
generated routine’s positioning towards kernels (as determined in phase 4)

2. A Method for High Productivity GPU Porting 46

end subroutine
end module

Module 1
Routine 1

Specification
Region

Early Exit
Region

Generic
Region

Parallel
Region 1

Call Region
1

Call Region
2

Parallel
Region 2

Routine 2

is composed of

Legend

Model
Object Generic

Region

Generic
Region

Figure 2.9: Example of an intermediate global application model.

Figure 2.9 illustrates the object structure for the in-memory model that is
generated by the “application model generator” class (as described in Section
2.5.3) for this specific sample code. Code lines inside routines are separated
into regions of specific types, according to the underlying code structure - in
this example, “routine 1” consists of a specification part (as nearly all Fortran
routines), an “early exit region” surrounded by two “generic code regions” (the
branch structure surrounding the return statement), as well as two parallel
regions. Parallel regions themselves are composed of a list of regions - in the given
example the first parallel region consists of two call regions, while the second
contains a generic code region. In general, parallel regions may be composed
of generic regions, early exit regions and call regions - recursion with further
parallel regions are not allowed, i.e. Hybrid Fortran at this point does not
support dynamic parallelism.

The class inheritance graph to model any such code structure is thus given by
Figure 2.10. Modules are composed of routines, which are composed of regions,
some of which (of type parallel region) consist of further regions. In the example
given by Listing 2.10, “generic code regions” are modeled by the “Region” base
class, while other regions are given some more specific behaviour through the
means of subclassing as illustrated. The generic region base class, finally, is
composed of the list of code lines associated with it (modelled as standard Python
strings, thus not shown in the class hierarchy), as well as, for each code line, a
list of symbol objects.

These model objects (i.e. instances of the “Symbol” class) contain all infor-

�293. Application

Physical Processes
Original physical process library from JMA adapted for GPU
(MSM0705 model) provides column-wise models for:

Radiation, (solar, optical cloud absorption, atmospheric reflection
and absorption)

For efficient use of GPU, memory footprint of indirect radiation
effects was reduced by 10x by using ad-hoc computations for each
long-wave band rather than storing temporary data of all bands.

Planetary boundary layer model
Wind momentum-, sensible heat- and latent heat surface fluxes

Kessler-type warm rain model
Hybrid Fortran’s adaptive parallelization granularity used to
generate GPU version

physical process call
Legend

outside of kernels

has
kernels

inside of kernels

physical process kernel

CPU GPU

�313. Application

Column-wise Courant-Friedrichs-Lewy Convergence
Precipitation module uses separate CFL condition per column.
Due to granularity shift, column-wise CFL convergence requires
change from simple loop break to reduction kernel and masking
array (cfl_reached).

3. Application to Numerical Weather Prediction 66

! ... initialization of variables

timestep_sed: do
! ... Runge -Kutta based iterative solution to sedimentation

@parallelRegion{appliesTo(GPU), domName(i, j), domSize(nx , ny)}
if (dt_rk_rest < dt_rk_rest_epsln) then

cfl_reached = .true.
end if
@end parallelRegion

call all_true_for_xy_plane(cfl_reached , all_cfl_reached)

if (all_cfl_reached) then
exit timestep_sed

end if
end do timestep_sed

3.2 Verification

Correctness as well as completeness of Hybrid ASUCA for both hardware ar-
chitectures has been continuously verified throughout the development process.
In this Section we outline the way in which correctness of the model has been
ensured.

Hybrid ASUCA uses 64bit precision floating point arithmetic for all compu-
tations and on all architectures. A series of test cases with idealized data have
been used in order to verify Hybrid ASUCA’s output against the reference im-
plementation, ensuring a root mean square error lower than 10�9 for pressure,
moment and temperature variables. This includes a radiation module test, a
physical process ensemble test for radiation, planetary boundary region and sur-
face (“GABLS3” [70]) as well as a two-dimensional (IK) “warm bubble” test for
the dynamical core in isolation. In addition, tests with the same error metric
have been conducted for a series of module configurations of ASUCA together
with real weather input data on multiple grid sizes - 51x61x58, 301x301x58 as
well as 1581x1301x58, the latter being a full sized operational mesoscale grid
with two-kilometer resolution for Japan and its surrounding region. A subset
of these tests (available for single node execution with time to solution on the
order of minutes) has been used as an automatic verification system after each
new build of Hybrid ASUCA, such that we were able to test each newly ported
module without significant development overhead.

Figure 3.5 shows the resulting cloud cover for a test with the full sized opera-
tional grid, with all physical process simulations enabled as discussed in Section
3.1.5. The test has been conducted on the Tokyo University cluster “Reedbush
H” [82]. This cluster o↵ers two 18-core Xeon E5-2695 v4 CPUs per node as
well as two NVIDIA Tesla P100 GPUs per node. At least seven nodes (14 CPU

3. Application to Numerical Weather Prediction 65

Column-wise Courant-Friedrichs-Lewy Convergence

sediment time integration

sediment run run sed. parallel region

halo exchange

precipitation z-tendency
moment x

z-tendency
moment y

z-tendency
moment z

tendency
density / pot.
temperature

calculate z-
tendency

calculate z-
tendency

calculate z-
tendency

calculate z-
tendency

run sed. pre

run sed. post

mp terminal
vel. pre

sed. run sub

timeset
terminal vel.

timeset pre
sed.

timeset sed.

dynamics
sed.

RKshort dtshort∫ diagnose sed.

physics sed.

dynamics
sed.

flux
precipation

diagnose sed.

mp terminal
vel.

vel. r

terminal vel.
to wd

wd to wdrop

flux
calculation

positive run

routine
routine with
GPU kernelLegend

CFL
convergence
reduction

routine with
CPU kernel

routine with
hybrid kernel

Figure 3.4: Granularity transformation of physical processes call tree for GPU.

The time splitting method employed for the water substance sedimentation
process requires some specific treatment in order to achieve a fine-grained par-
allelization for GPU, due to data-dependent per-column branching based on the
Courant-Friedrichs-Lewy convergence condition. Figure 3.4 shows the call tree
and kernel structure of the sedimentation code in Hybrid ASUCA. As in other
physical processes, a single CPU parallelization is split into multiple GPU ker-
nels. The following listing shows the timestep loop used to port per-column
time splitting to GPU. A reduction kernel is employed to evaluate the values of
the array cfl_reached, which is privatized in IJ for GPU using the method de-
scribed in Section 2.3.3. In case of all columns converging, the time integration is
exited in order to avoid unnecessary kernel launches. In addition, cfl_reached
is passed down to all kernels called within the time integration for a fine-grained
breaking of GPU threads in case only a subset of columns has converged.

Listing 3.3: Sedimentation timestep with CFL convergence condition.

@domainDependant{
attribute(autoDom , present), domName(i,j), domSize(nx ,ny)

}
cfl_reached , dt_rk_rest , ...
@end domainDependant

�323. Application

Verification

3. Application to Numerical Weather Prediction 67

Figure 3.5: Total cloud cover result with ASUCA using a 2km resolution grid
with real initial data.

sockets) or 24 GPUs were required due to the problem’s memory requirements.
The visualization has been created by use of the “Grid Analysis and Display Sys-
tem” (GrADS), a two-dimensional visualization tool commonly used for weather
analysis and prediction [83].

3.3 Productivity

To examine the productivity of this solution we have analyzed the code and
compared it against the reference implementation. The high-level results of this
analysis is shown in Figure 3.6. In order to gain GPU support in addition to the
already existing multi-core and multi-node parallelization, the code has grown
by less than 4% in total, from 155k lines of code to 161k. Sanitizing the two code
versions (removing white space, comments and merging continued lines), the code
has grown by 12%, from 91k to 102k lines of code. 95% of the sanitized reference
code is used as-is in the new implementation, while 5% or approximately 5k lines
of code is replaced with approximately 15k new code lines.

Code changes and additions have the largest impact in terms of productivity.
We we have analyzed the additional 15k lines of code in more detail. Figure
3.7 shows a breakdown of these changes and compares them to an estimate of

Figure 3.5: Total cloud cover result for ASUCA
using 2km resolution grid and real initial data

Hybrid ASUCA uses 64bit FP arithmetic
throughout.
Normalized root mean square error was
tested continuously for pressure,
moment and temperature variables.
Stays within 1E-9.
Performed tests include:

Radiation test.
Physical process test for radiation,
planetary boundary layer and surface.
Two-dimensional “warm bubble” test.
Various application configurations with
real data, including full scale test on
1581x1301x58 grid (2km resolution).

�333. Application

Code Reuse and
Changes Comparison with OpenACC Estimate

Productivity Results

�34

4. Performance

Introduction Method Application Performance Method
Comparison Conclusion

�354. Performance

4. Performance Analysis 74

4.2 Reduced Weather Application

As ASUCA is a fairly large and complex application, a reduced weather ap-
plication is hereby presented as model that allows closer inspection, including
full access to the underlying source code. It is constructed with ASUCA’s code
properties in mind in order to illustrate some of its engineering characteristics.

4.2.1 Application Model

The reduced weather application has the following domains: horizontal spatial
domain IJ, vertical spatial domain K and time domain t. Equation 4.13 lists
the main equation governing this application: heat di↵usion with T being the
temperature defined in IJK-space, the thermal di↵usivity and f the rate of
heat input through radiation.

@T

@t

= r2
T + f (4.13)

This equation is solved numerically by using the explicit Euler method in
three dimensions. In addition, the k = 0 and k = nz boundaries are modeled
as infinite heat wells with temperatures 330K and 200K respectively. Radiation
f is assumed to be uniform and statically applied across the spatial domain.
The KI and KJ boundaries are modeled cyclically. We initialize the temperature
function to 0K with a 300K box from one quarter to three quarters of each spatial
dimension and set a delta of 0.1s between time steps. Figure 4.1 shows slices at
j = 100 for the resulting data with time steps at t = 0s, t = 30s and t = 90s.
This shows the heat di↵usion, the radiation e↵ect and the vertical boundary heat
exchange (330K and 200K respectively).

Figure 4.1: Output at j = 100.

In order to adhere to ASUCA’s code structure the application is split into a
dynamical core (which here only consists of the di↵usion @T

@t = r2
T) and phys-

ical processes with no interaction in the horizontal domain (radiation, vertical

4. Performance Analysis 74

4.2 Reduced Weather Application

As ASUCA is a fairly large and complex application, a reduced weather ap-
plication is hereby presented as model that allows closer inspection, including
full access to the underlying source code. It is constructed with ASUCA’s code
properties in mind in order to illustrate some of its engineering characteristics.

4.2.1 Application Model

The reduced weather application has the following domains: horizontal spatial
domain IJ, vertical spatial domain K and time domain t. Equation 4.13 lists
the main equation governing this application: heat di↵usion with T being the
temperature defined in IJK-space, the thermal di↵usivity and f the rate of
heat input through radiation.

@T

@t

= r2
T + f (4.13)

This equation is solved numerically by using the explicit Euler method in
three dimensions. In addition, the k = 0 and k = nz boundaries are modeled
as infinite heat wells with temperatures 330K and 200K respectively. Radiation
f is assumed to be uniform and statically applied across the spatial domain.
The KI and KJ boundaries are modeled cyclically. We initialize the temperature
function to 0K with a 300K box from one quarter to three quarters of each spatial
dimension and set a delta of 0.1s between time steps. Figure 4.1 shows slices at
j = 100 for the resulting data with time steps at t = 0s, t = 30s and t = 90s.
This shows the heat di↵usion, the radiation e↵ect and the vertical boundary heat
exchange (330K and 200K respectively).

Figure 4.1: Output at j = 100.

In order to adhere to ASUCA’s code structure the application is split into a
dynamical core (which here only consists of the di↵usion @T

@t = r2
T) and phys-

ical processes with no interaction in the horizontal domain (radiation, vertical

Performance Model: Reduced Weather Application

4. Performance Analysis 75

simulate
 for t ∈ [0,tend]:

routine
loop repeating
.. statements..
for each x ∈ [a, b]

Legend
dif fuse
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:
 for k ∈ [2,nz-1]:
 .. pointwise process .. 

.. boundary conditions ..

physics
 for j ∈ [1,ny]:
 for i ∈ [1,nx]:

radiate
 for k ∈ [1,nz]:
 .. pointwise process ..

surface

planetary boundary

call
for x ∈ [a, b]:
 .. statements ..

Figure 4.2: Code structure of the reduced weather application.

boundaries). The dynamical core consists of four tight stencil kernels - the inner
IJK region as well as the boundary regions for the IJ, KI and KJ boundaries.
Physical processes on the other hand employ (comparatively) coarse-grained par-
allelization, shown in Listing 4.1, with each parallel thread executing all physical
processes for a single K-column. Figure 4.2 shows this code structure including
the computationally relevant call graph, loops and data domains. The entire
code is listed in Appendix C.

Listing 4.1: Physical processes.

subroutine run_physics (&
& energy , energy_surf , energy_pbl)
! .. more specifications ..
real (8),intent(inout):: energy (0:nx+1,0:ny+1,nz)
real (8),intent(in):: energy_surf (0:nx+1,0:ny+1)
real (8),intent(in):: energy_pbl (0:nx+1,0:ny+1)

do j = 0,ny+1
do i = 0,nx+1

call radiate(energy(i,j,:))
call exchange_heat_with_boundary(&

& energy(i,j,:), energy_surf(i,j), 1)
call exchange_heat_with_boundary(&

& energy(i,j,:), energy_pbl(i,j), nz)
end do

end do
end subroutine

The radiation process is modelled as a vector addition for columns in k,
while the heat boundary exchange process calculates the heat exchange for scalar
points.

Finally, the loop over time is applied in the top level subroutine simulate as

4. Performance Analysis 74

4.2 Reduced Weather Application

As ASUCA is a fairly large and complex application, a reduced weather ap-
plication is hereby presented as model that allows closer inspection, including
full access to the underlying source code. It is constructed with ASUCA’s code
properties in mind in order to illustrate some of its engineering characteristics.

4.2.1 Application Model

The reduced weather application has the following domains: horizontal spatial
domain IJ, vertical spatial domain K and time domain t. Equation 4.13 lists
the main equation governing this application: heat di↵usion with T being the
temperature defined in IJK-space, the thermal di↵usivity and f the rate of
heat input through radiation.

@T

@t

= r2
T + f (4.13)

This equation is solved numerically by using the explicit Euler method in
three dimensions. In addition, the k = 0 and k = nz boundaries are modeled
as infinite heat wells with temperatures 330K and 200K respectively. Radiation
f is assumed to be uniform and statically applied across the spatial domain.
The KI and KJ boundaries are modeled cyclically. We initialize the temperature
function to 0K with a 300K box from one quarter to three quarters of each spatial
dimension and set a delta of 0.1s between time steps. Figure 4.1 shows slices at
j = 100 for the resulting data with time steps at t = 0s, t = 30s and t = 90s.
This shows the heat di↵usion, the radiation e↵ect and the vertical boundary heat
exchange (330K and 200K respectively).

Figure 4.1: Output at j = 100.

In order to adhere to ASUCA’s code structure the application is split into a
dynamical core (which here only consists of the di↵usion @T

@t = r2
T) and phys-

ical processes with no interaction in the horizontal domain (radiation, vertical

4. Performance Analysis 74

4.2 Reduced Weather Application

As ASUCA is a fairly large and complex application, a reduced weather ap-
plication is hereby presented as model that allows closer inspection, including
full access to the underlying source code. It is constructed with ASUCA’s code
properties in mind in order to illustrate some of its engineering characteristics.

4.2.1 Application Model

The reduced weather application has the following domains: horizontal spatial
domain IJ, vertical spatial domain K and time domain t. Equation 4.13 lists
the main equation governing this application: heat di↵usion with T being the
temperature defined in IJK-space, the thermal di↵usivity and f the rate of
heat input through radiation.

@T

@t

= r2
T + f (4.13)

This equation is solved numerically by using the explicit Euler method in
three dimensions. In addition, the k = 0 and k = nz boundaries are modeled
as infinite heat wells with temperatures 330K and 200K respectively. Radiation
f is assumed to be uniform and statically applied across the spatial domain.
The KI and KJ boundaries are modeled cyclically. We initialize the temperature
function to 0K with a 300K box from one quarter to three quarters of each spatial
dimension and set a delta of 0.1s between time steps. Figure 4.1 shows slices at
j = 100 for the resulting data with time steps at t = 0s, t = 30s and t = 90s.
This shows the heat di↵usion, the radiation e↵ect and the vertical boundary heat
exchange (330K and 200K respectively).

Figure 4.1: Output at j = 100.

In order to adhere to ASUCA’s code structure the application is split into a
dynamical core (which here only consists of the di↵usion @T

@t = r2
T) and phys-

ical processes with no interaction in the horizontal domain (radiation, vertical

4. Performance Analysis 74

4.2 Reduced Weather Application

As ASUCA is a fairly large and complex application, a reduced weather ap-
plication is hereby presented as model that allows closer inspection, including
full access to the underlying source code. It is constructed with ASUCA’s code
properties in mind in order to illustrate some of its engineering characteristics.

4.2.1 Application Model

The reduced weather application has the following domains: horizontal spatial
domain IJ, vertical spatial domain K and time domain t. Equation 4.13 lists
the main equation governing this application: heat di↵usion with T being the
temperature defined in IJK-space, the thermal di↵usivity and f the rate of
heat input through radiation.

@T

@t

= r2
T + f (4.13)

This equation is solved numerically by using the explicit Euler method in
three dimensions. In addition, the k = 0 and k = nz boundaries are modeled
as infinite heat wells with temperatures 330K and 200K respectively. Radiation
f is assumed to be uniform and statically applied across the spatial domain.
The KI and KJ boundaries are modeled cyclically. We initialize the temperature
function to 0K with a 300K box from one quarter to three quarters of each spatial
dimension and set a delta of 0.1s between time steps. Figure 4.1 shows slices at
j = 100 for the resulting data with time steps at t = 0s, t = 30s and t = 90s.
This shows the heat di↵usion, the radiation e↵ect and the vertical boundary heat
exchange (330K and 200K respectively).

Figure 4.1: Output at j = 100.

In order to adhere to ASUCA’s code structure the application is split into a
dynamical core (which here only consists of the di↵usion @T

@t = r2
T) and phys-

ical processes with no interaction in the horizontal domain (radiation, vertical

temperature
thermal diffusivity
radiation heat

diffuse: 7-point Von-Neumann-
type stencil, 0.125 FLOP/B DP

radiate: 0.0625 FLOP/B DP
➡ memory bandwidth bounded

on all architectures (e.g.
system balance on P100: 7.8
FLOP/B, 6-core Westmere:
2.8 FLOP/B)

4. Performance Analysis 77

3. through su�ciently large spatial dimensions, one-dimensional and two-
dimensional parametrizations can be omitted from the model, i.e. their
runtime is negligible,

4. operations that can be hoisted out of loops are optimized by the compiler.

Di↵usion requires a maximum of eight memory accesses per point update as
well as six add- and two multiply instructions, being a Von-Neumann-type seven
point stencil code. We define and calculate “arithmetic intensity” as

c

b ·m =
8

8 · 8
⇥
FLOP

B

⇤
= 0.125

⇥
FLOP

B

⇤
, (4.14)

where m is the number of values to read and write from/to memory per point
update, b is the byte length of each value and c is the number of floating point
cycles spent per point update. In contrast to the roofline model we use floating
point cycles rather than operations here in order to have a more generalized
model that can be applied to multi-cycle floating point operations such as division
or exponentiation [85].

The minimum arithmetic intensity for compute boundedness is 5.9[FLOP
B] and

7.8[FLOP
B] for Tesla K20x and P100, respectively, using the performance metrics

from Appendix A). Thus, diffuse is clearly memory bandwidth bounded. This
holds true even if six of the eight memory accesses are cached. Due to the
lower random access memory bandwidth, the boundary region JK is clearly also
memory bandwidth bounded. The same holds for the radiation process since
it requires two memory accesses and one FLOP per point1. We therefore con-
clude that the reduced weather application is memory bandwidth bounded for
all processes.

The reduced weather application is therefore highly sensitive to the cache
performance of the target architecture. Applying the above parameters to the
speedup condition (equation 4.6), a speedup on GPU is feasible if the output is
not required at every time step.

With some simplification in the domain boundaries (by assuming su�ciently
large domains for halos to be neglectable) the model GPU execution time can
be determined as

tD =
�toutput

�ttimestep
(nx · ny · nz · (

b ·msa

BWD
+

b ·mHtoD

BWHtoD
) + ny · nz ·

mra

RAD
), (4.15)

1One should note however that this does not necessarily reflect typical physical processes in
atmospheric models - such processes tend to consist of a mix of compute bounded- and memory
bandwidth bounded algorithms.

#timesteps between output pointwise inner diffusion

pointwise host/device I/O

pointwise diffusion boundary

�36

Results: Reduced Weather Application

4. Performance Analysis 81

Figure 4.3: Comparing performance with the reduced weather application for
handwritten vs. Hybrid Fortran generated vs. model on 2563 Grid.

Overall we observe a speedup of 8x for the Hybrid Fortran version vs. 6-core
CPU, compared to the speedup of 7.7x for the OpenACC version. The Hybrid
Fortran implementation’s speedup is thus very close to the bandwidth increase
of 8.2x between the two architectures (see Appendix A). On CPU the Hybrid
Fortran implementation performs equivalently to the manually coded OpenMP
implementation, which is unsurprising given that the CPU code generated by
Hybrid Fortran is largely identical.

4.3 Hybrid ASUCA

In this Section we evaluate the performance of the Hybrid ASUCA application
introduced in Chapter 3.

4.3.1 Hybrid ASUCA Overall Kernel Performance

In this section, performance results for the Hybrid ASUCA implementation are
discussed for a 301 x 301 x 58 grid that is small enough for single GPU or single
socket execution with the latest architecture (Tesla P100 on Reedbush-H), yet
still allows a useful performance analysis in terms of occupancy. This allows to
draw conclusions for the kernel performance as opposed to the communication
overhead (which impacts performance more strongly, the more nodes are used
for the same grid size, i.e. when applying strong scaling as will be shown in
Section 4.3.2). Additionally, an older system (TSUBAME 2.5 with Tesla K20x)

4. Performance Analysis 79

Performance Portable Storage Order

Table 4.2 shows the impact of storage order on execution time. For the re-
duced weather application, choosing a sub-optimal storage order impacts CPU
execution time negatively by 35%, while on GPU the slowdown is 7.7x. This
verifies the necessity of a flexible storage order for applications with similar data
structures as ASUCA, as discussed in Section 3.1.2.

Table 4.2: Influence of Storage Order on Execution Time, nx = ny = nz = 128.

IJK Order KIJ Order
CPU Single Core 1.73s 1.28s
GPU (OpenACC) 0.10s 0.77s

(Fastest Implementation)

“Naive” Parallelization

Table 4.3: Execution Time with “Naive” Parallelization.

nx · ny · nz 1283 2563

CPU Single Core Measurement 1.28s 8.20s
CPU Single Core Model w/ cache 0.74s 5.70s
CPU Single Core Model w/o cache 1.77s 13.91s

CPU 6 Core Measurement 0.40s 4.25s
CPU 6 Core Model w/ cache 0.38 2.84s
CPU 6 Core Model w/o cache 0.87 6.77s

GPU Measurement 163.13s n/a

In order to establish a baseline performance we apply a basic parallelization
to the reduced weather application with OpenACC and OpenMP directives.
Storage order is made variable across the whole application by using macros for
accessing and specifying multi-dimensional arrays. I-J-K order is used for GPU
and K-I-J order for the CPU implementation. Table 4.3 shows the resulting CPU
performance from this parallelization.

We conclude that the measured CPU performance is already well within the
models with perfect and no cache. The GPU performance is however very slow -
more than 400x slower than the six core CPU version, which is not in agreement
with the models we have constructed. This is to be expected however, since no
data region has yet been defined, without which the data is being copied over
the slow PCI express bus for every kernel invocation. Further discussion for the
reduced weather application therefore focuses on GPU performance.

4. Performance

Influence of storage order
on execution time→

→
Performance of reduced weather
app. for separately implemented,
vs. Hybrid Fortran generated, vs.
model on 256x256x256 grid, 100

timesteps (fastest
implementation)

�37

Results: Hybrid ASUCA

4. Performance

Strong scaling results
on Reedbush-H,
1581 x 1301 x 58 Grid (Japan
and surrounding region)

Kernel performance on
reduced Grid

(301 x 301 x 58)

3x

→

←

4.9x

�38

4. Performance Analysis 88

Figure 4.5: Strong scaling speedup on 1581 x 1301 x 58 ASUCA Grid.

this production run, on a 1581 x 1301 x 58 grid with 2km horizontal resolution
using real world sample input data, when comparing the fastest time to solution
on GPU with the minimum number of CPU sockets required to complete the
simulation due to host memory requirements. For a given performance it shows
that 24 GPUs can replace more than 50 18-core CPU sockets. When comparing
the same number of GPUs and CPU sockets, the GPU is up to 76% faster. See
Appendix B.3 for the software configuration used in this test.

58.10
34.02

13.38 20.86

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Compute

Halo Communication

Figure 4.6: Impact of communication for strong scaling on 1581 x 1301 x 58
ASUCA Grid.

The following factors influence scalability and will need to be improved in

Impact of communication and modules for strong scaling on 1581 x 1301 x
58 ASUCA Grid, using 2x P100 GPU per node (TSUBAME 3)

4. Performance Analysis 89

order to achieve better strong scaling:

1. MPI communications code has been used as-is, with no further optimiza-
tions applied with respect to the targeted cluster. When testing the impact
of communication on performance on TSUBAME 3.0 using the minimally
required 24 GPUs, as shown in Figure 4.6, communication requires ap-
proximately 13.4s or 18.7% of the overall runtime of 71.5s (to compute a
600 seconds simulation of the full regional grid in 2km resolution). When
doubling the number of GPUs this increases to 20.9s while the compute
time decreases from 58.1s to 34.0s, thus the communication then takes 38%
of the runtime. Overlapping communication and computations has been
shown to be e↵ective in enabling better scaling by Shimokawabe et al. [54],
thus this approach will be the first step to improve performance at larger
scales.

2. Since GPUs require a large enough problem size per chip in order to have
a su�cient number of threads to fill all schedulers, strong scaling is limited
when the problem size per GPU becomes too small.

5.59 5.08

24.77
15.74

4.11

2.07

9.96

7.19

27.06

24.81

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Short Timestep
Dynamics

Precipitation

Long Timestep
Dynamics

Long Timestep
Physics

Other

Figure 4.7: Impact of modules for strong scaling on 1581 x 1301 x 58 ASUCA
Grid.

Figure 4.7 categorizes the performance impact of the di↵erent modules of
ASUCA on performance, including communication. The simulation of fast mov-
ing sound- and gravity waves has the highest impact, followed by radiation- and
boundary layer physics. Since the physics calculations do not require communi-
cation, the impact of fast moving dynamics increases with the number of nodes,
rendering it the most important optimization target for larger scale simulations.
For a listing of the configurations used to gather the data for figures 4.6 and 4.7,
please refer to Appendix B.4.

4. Performance Analysis 88

Figure 4.5: Strong scaling speedup on 1581 x 1301 x 58 ASUCA Grid.

this production run, on a 1581 x 1301 x 58 grid with 2km horizontal resolution
using real world sample input data, when comparing the fastest time to solution
on GPU with the minimum number of CPU sockets required to complete the
simulation due to host memory requirements. For a given performance it shows
that 24 GPUs can replace more than 50 18-core CPU sockets. When comparing
the same number of GPUs and CPU sockets, the GPU is up to 76% faster. See
Appendix B.3 for the software configuration used in this test.

58.10
34.02

13.38 20.86

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Compute

Halo Communication

Figure 4.6: Impact of communication for strong scaling on 1581 x 1301 x 58
ASUCA Grid.

The following factors influence scalability and will need to be improved in

4. Performance Analysis 89

order to achieve better strong scaling:

1. MPI communications code has been used as-is, with no further optimiza-
tions applied with respect to the targeted cluster. When testing the impact
of communication on performance on TSUBAME 3.0 using the minimally
required 24 GPUs, as shown in Figure 4.6, communication requires ap-
proximately 13.4s or 18.7% of the overall runtime of 71.5s (to compute a
600 seconds simulation of the full regional grid in 2km resolution). When
doubling the number of GPUs this increases to 20.9s while the compute
time decreases from 58.1s to 34.0s, thus the communication then takes 38%
of the runtime. Overlapping communication and computations has been
shown to be e↵ective in enabling better scaling by Shimokawabe et al. [54],
thus this approach will be the first step to improve performance at larger
scales.

2. Since GPUs require a large enough problem size per chip in order to have
a su�cient number of threads to fill all schedulers, strong scaling is limited
when the problem size per GPU becomes too small.

5.59 5.08

24.77
15.74

4.11

2.07

9.96

7.19

27.06

24.81

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Short Timestep
Dynamics

Precipitation

Long Timestep
Dynamics

Long Timestep
Physics

Other

Figure 4.7: Impact of modules for strong scaling on 1581 x 1301 x 58 ASUCA
Grid.

Figure 4.7 categorizes the performance impact of the di↵erent modules of
ASUCA on performance, including communication. The simulation of fast mov-
ing sound- and gravity waves has the highest impact, followed by radiation- and
boundary layer physics. Since the physics calculations do not require communi-
cation, the impact of fast moving dynamics increases with the number of nodes,
rendering it the most important optimization target for larger scale simulations.
For a listing of the configurations used to gather the data for figures 4.6 and 4.7,
please refer to Appendix B.4.

4. Performance Analysis 89

order to achieve better strong scaling:

1. MPI communications code has been used as-is, with no further optimiza-
tions applied with respect to the targeted cluster. When testing the impact
of communication on performance on TSUBAME 3.0 using the minimally
required 24 GPUs, as shown in Figure 4.6, communication requires ap-
proximately 13.4s or 18.7% of the overall runtime of 71.5s (to compute a
600 seconds simulation of the full regional grid in 2km resolution). When
doubling the number of GPUs this increases to 20.9s while the compute
time decreases from 58.1s to 34.0s, thus the communication then takes 38%
of the runtime. Overlapping communication and computations has been
shown to be e↵ective in enabling better scaling by Shimokawabe et al. [54],
thus this approach will be the first step to improve performance at larger
scales.

2. Since GPUs require a large enough problem size per chip in order to have
a su�cient number of threads to fill all schedulers, strong scaling is limited
when the problem size per GPU becomes too small.

5.59 5.08

24.77
15.74

4.11

2.07

9.96

7.19

27.06

24.81

0.00

20.00

40.00

60.00

80.00

24 48

Ex
ec
ut
io
n
Ti
me
 [
s]

Number of GPUs

Short Timestep
Dynamics

Precipitation

Long Timestep
Dynamics

Long Timestep
Physics

Other

Figure 4.7: Impact of modules for strong scaling on 1581 x 1301 x 58 ASUCA
Grid.

Figure 4.7 categorizes the performance impact of the di↵erent modules of
ASUCA on performance, including communication. The simulation of fast mov-
ing sound- and gravity waves has the highest impact, followed by radiation- and
boundary layer physics. Since the physics calculations do not require communi-
cation, the impact of fast moving dynamics increases with the number of nodes,
rendering it the most important optimization target for larger scale simulations.
For a listing of the configurations used to gather the data for figures 4.6 and 4.7,
please refer to Appendix B.4.

4. Performance

Results: Hybrid ASUCA

�39

Introduction Method Application Performance Method
Comparison Conclusion

✓ new granularity abstraction and memory layout
transformation method

✓ applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors
required for a full scale run with real data
method unique in increasing productivity for
porting coarse-grained codes to GPU

Contributions 5. Method Comparison
Outline of Methods
Productivity
Characterization

�405. Method Comparison

Domain-Specific Languages
Parallelization, data access patterns and potentially other
program aspects are abstracted, requiring a full rewrite:

Shimokawabe et al., STELLA, GridTools
C++ user language
Memory access patterns abstracted (stencil DSL)
Include communicator

Atlas
C++ and Fortran user languages
Higher level abstraction, code applies to variable
grids

Methods for Hybrid CPU/GPU HPC Codes

Parallelization and data movement are abstracted,
access patterns are fixed:

OpenACC used directly in various degrees by
Lapillonne et al.
Govett et al.
Norman et al.

Directive-Based Methods

The following approaches to code granularity
optimization are known:

Kernel fusion is employed in the following approaches:

STELLA / GridTools
CLAW compiler

Proposed Hybrid Fortran is a unique new method to
abstract granularity

Granularity Optimization
Allows variable memory layouts without a full code rewrite:

Kokkos
C++ user language

ICON
Fortran user language

Hybrid Fortran

Memory Layout Transformation

�415. Method Comparison

Method Characterization
5. Productivity Review of Hybrid Implementation Methods 90

Table 5.1: Data structure characterization for hybrid implementation methods.

method memory layout grid
Shimokawabe et al. abstracted fixed
STELLA & GridTools abstracted fixed
Atlas abstracted variable
OpenACC & OpenMP fixed fixed
CLAW plus OpenACC fixed fixed
Kokkos transforming fixed
ICON transforming fixed
Hybrid Fortran transforming fixed

5.2.2 Evaluation Criteria: Control Structures

In this section we provide a characterization of the methods described in Section
5.1 with respect to their control structures.

Parallelization Schemes We call a parallelization scheme fixed if it is specific
to one hardware architecture. CUDA is the most commonly used example for
such a scheme. Since this chapter is limited to hybrid implementation methods,
none of the listed have a fixed parallelization scheme. With an abstracted par-
allelization, a higher level abstraction is introduced, such as a library call that
is passed kernel functors or a parallelization DSL. Transforming parallelizations
can be applied to parallelize existing loops (assuming no loop carried dependen-
cies), i.e. when omitting parallelization the application still produces the same
results on a single thread.

Granularity The need for granularity transformations has been discussed in
Section 1.3.6. As with memory layout we distinguish between methods with
fixed-, abstracted- and transforming granularity. Fixed methods require rewrites
for making the granularity finer or coarser. Granularity abstraction allows the
user to explicitly specify the granularity for di↵erent architectures. Transforming
methods, finally, apply granularity changes automatically to existing codes. For
transformations we di↵erentiate between methods allowing only one direction
(either kernel fusion or fission) or both. Abstracted granularity also implied
abstracted parallelization.

Communication Schemes Certain frameworks facilitate easier inter-node
and inter-GPU communication by using data structure abstractions to synthesize
the required halo regions needed for communications. We therefore distinguish
between fixed- and abstracted communication schemes.

5. Productivity Review of Hybrid Implementation Methods 91

Programming Language Changing the underlying programming language of
a legacy application carries significant productivity penalties. Support for an ap-
plication’s original language is therefore an important characteristic to consider.
We distinguish between methods for C++, Fortran and methods supporting
both.

Characterization of Methods Table 5.2 shows the control structure eval-
uation criteria, as discussed above, applied to the methods outlined in Section
5.1.

Table 5.2: Control structure characterization for hybrid implementation meth-
ods.

method parallelization granularity communication language
Shimokawabe et al. abstracted fixed abstracted C++
STELLA abstracted transforming abstracted C++
& GridTools (kernel fusion)
Atlas abstracted fixed abstracted C++

and Fortran
OpenACC transforming fixed fixed C++
& OpenMP and Fortran
CLAW transforming transforming fixed Fortran
plus OpenACC (kernel fusion)
Kokkos abstracted fixed fixed C++
ICON transforming fixed fixed Fortran
plus OpenMP
Hybrid Fortran abstracted abstracted fixed Fortran

5.2.3 Evaluation

For a productivity evaluation we analyze how the data- and control structure
and characteristics (outlined in the Tables 5.1 and 5.2) manifest themselves with
respect to specific usecases. For this purpose we quantify the productivity impact
by estimating the importance of these characteristics relative to each other. The
evaluation formula developed in this section is designed to allow for adjustments
by the user of this evaluation, depending on which aspects match up with the
requirements of an application.

We start by defining an application requirement as a binary vector of aspects
r↵, separately for data- and control structures, with ↵ being one of [data, control].

Regarding data structures, each application either does or does not require
(1) the ability to change the memory layout (e.g. due to GPUs having a di↵erent
optimal layout compared to CPUs, as discussed in Section 1.3.6), and (2) the
ability to use multiple grids with the same code. An application requiring the

→Data structure
characterization

Control structure
characterization →

�425. Method Comparison

Method Evaluation

investment scoring matrix

5. Productivity Review of Hybrid Implementation Methods 94

Table 5.4: Scoring matrix Aij(control).

method F2F F2C C2F COMM CXX FOR
Shimokawabe et al. 1 15 15 1 0 5
STELLA 1 1 5 1 0 5
& GridTools
Atlas 1 15 15 1 0 0
OpenACC 0 15 15 3 0 0
& OpenMP
CLAW 0 0 5 3 5 0
plus OpenACC
Kokkos 1 15 15 3 0 5
ICON 0 15 15 3 5 0
plus OpenMP
Hybrid Fortran 1 1 1 3 5 0

wdata =

"
2

3

#
, wcontrol =

2

6666666664

1

1

1

3

5

5

3

7777777775

. (5.1)

In order to normalize scores we calculate the maximum investment score
Imax (i.e. the worst case) using the following formula, with Ajmax(↵) being the
theoretical worst case investment for each column:

Ajmax(data) =
h
3 3

i

Ajmax(control) =
h
15 15 15 3 5 5

i

Imax(↵, r↵) = w↵ · diag(r↵) ·Ajmax(↵)T

(5.2)

Finally, the productivity score P (r↵) for each method is given as:

P↵(r↵) = 1�Aij(↵) · (w↵ · diag(r↵))T

P (r) = mean(Pdata(rdata), Pcontrol(rcontrol))

(5.3)

For the scoring results we di↵erentiate between a “Christmas tree usecase”,
i.e. a usecase that requires all features given by r as a vector-of-ones, secondly a

weights requirement vector

5. Productivity Review of Hybrid Implementation Methods 95

Table 5.5: Productivity score P (r) for di↵erent usecases r.

method Xmas tree phys. dyn. (Fortran) dyn. (C++)
Shimokawabe et al. 0.35 0.46 0.54 0.79
STELLA & GridTools 0.47 0.55 0.54 0.79
Atlas 0.67 0.69 0.79 0.79
OpenACC & OpenMP 0.31 0.36 0.41 0.41
CLAW plus OpenACC 0.31 0.45 0.41 0.15
Kokkos 0.39 0.63 0.64 0.90
ICON 0.39 0.86 0.91 0.65
Hybrid Fortran 0.52 0.98 0.90 0.64

typical usecase for earth system physics packages where coarse-grained Fortran
code is to be ported to GPU (with rcontrol being

⇥
1 0 1 0 0 1

⇤
, rdata be-

ing
⇥
1 0

⇤
), thirdly a typical usecase for earth system dynamics where fine-

grained Fortran code is ported (with rcontrol being
⇥
1 0 0 1 0 1

⇤
, rdata

being
⇥
1 0

⇤
) and lastly the same dynamics usecase repeated for C++ codes.

Table 5.5 shows the results from this analysis.

5.3 Concluding Remarks

There is no one-size-fits-all solution (yet) available to solve all the problems
we have described in an e�cient and productive manner. Generally, the more
variability there is in the ideal runtime characteristics of an application on the
chosen hardware platforms, the more useful abstractions become in dealing with
this variability. At this point we want to advocate for a careful examination
of these abstractions for each new usecase, both on the application developer-
as well as the framework developer side. For earth system software where the
aforementioned variability is high, the Atlas library appears to deliver be the
most promising approach. For physical packages and dynamical cores written
in Fortran on a single grid, Hybrid Fortran has very promising productivity
characteristics.

In addition to the productivity model presented in this chapter, an interactive
spreadsheet based tool has been developed, allowing users to define their usecase
r↵, as well as adjusting the weights w↵. The result is shown as a heat map for
the various characteristics on a flattened plane. The tool is publicly accessible2.

2https://docs.google.com/spreadsheets/d/1zf7SBq_C6zQy-FuPZPPXaeVgsL26D6oSt8y7VhANTog

5. Productivity Review of Hybrid Implementation Methods 95

Table 5.5: Productivity score P (r) for di↵erent usecases r.

method Xmas tree phys. dyn. (Fortran) dyn. (C++)
Shimokawabe et al. 0.35 0.46 0.54 0.79
STELLA & GridTools 0.47 0.55 0.54 0.79
Atlas 0.67 0.69 0.79 0.79
OpenACC & OpenMP 0.31 0.36 0.41 0.41
CLAW plus OpenACC 0.31 0.45 0.41 0.15
Kokkos 0.39 0.63 0.64 0.90
ICON 0.39 0.86 0.91 0.65
Hybrid Fortran 0.52 0.98 0.90 0.64

typical usecase for earth system physics packages where coarse-grained Fortran
code is to be ported to GPU (with rcontrol being

⇥
1 0 1 0 0 1

⇤
, rdata be-

ing
⇥
1 0

⇤
), thirdly a typical usecase for earth system dynamics where fine-

grained Fortran code is ported (with rcontrol being
⇥
1 0 0 1 0 1

⇤
, rdata

being
⇥
1 0

⇤
) and lastly the same dynamics usecase repeated for C++ codes.

Table 5.5 shows the results from this analysis.

5.3 Concluding Remarks

There is no one-size-fits-all solution (yet) available to solve all the problems
we have described in an e�cient and productive manner. Generally, the more
variability there is in the ideal runtime characteristics of an application on the
chosen hardware platforms, the more useful abstractions become in dealing with
this variability. At this point we want to advocate for a careful examination
of these abstractions for each new usecase, both on the application developer-
as well as the framework developer side. For earth system software where the
aforementioned variability is high, the Atlas library appears to deliver be the
most promising approach. For physical packages and dynamical cores written
in Fortran on a single grid, Hybrid Fortran has very promising productivity
characteristics.

In addition to the productivity model presented in this chapter, an interactive
spreadsheet based tool has been developed, allowing users to define their usecase
r↵, as well as adjusting the weights w↵. The result is shown as a heat map for
the various characteristics on a flattened plane. The tool is publicly accessible2.

2https://docs.google.com/spreadsheets/d/1zf7SBq_C6zQy-FuPZPPXaeVgsL26D6oSt8y7VhANTog

�435. Method Comparison

Interactive Evaluation Matrix

5. Productivity Review of Hybrid Implementation Methods 96

'DWD�6WUXFWXUH�([SUHVVLYHQHVV�䌋� 0HPRU\�/D\RXW IL[HG DEVWUDFWHG WUDQVIRUPLQJ

/DQJXDJH�	�&RQWURO�6WUXFWXUH�
([SUHVVLYHQHVV�䌌 *ULG IL[HG IL[HG YDULDEOH IL[HG YDULDEOH

8VHU�
/DQJXDJH

&RGH�
*UDQXODULW\ 3DUDOOHOL]DWLRQ

3URGXFWLYLW\�ODQGVFDSH�PDSSHG�WR�SRUWLQJ�PHWKRGV
3URGXFWLYLW\�YDOXHV�FDOFXODWHG�DV�WKH�SURGXFW�RI�/DQJXDJH�	�FRQWURO�VWUXFWXUH�
SURGXFWLYLW\�VFRUH�DQG�GDWD�VWUXFWXUH�SURGXFWLYLW\�VFRUH 3URG��6FRUH�䌌

&��

IL[HG

IL[HG ���� ���� ���� ���� ���� ���

DEVWUDFWHG ���� ���� ���� ���� ���� ���

WUDQVIRUPLQJ ���� ���� ���� ���� ���� ���
DEVWUDFWHG DEVWUDFWHG ���� ���� ���� ���� ���� ���

WUDQVIRUPLQJ

ILQH�WR�
FRDUVH

DEVWUDFWHG

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ���
ILQH�WR�
FRDUVH

WUDQVIRUPLQJ

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ���

)RUWUDQ

IL[HG
IL[HG ���� ���� ���� ���� ���� ���
DEVWUDFWHG ���� ���� ���� ���� ���� ���
WUDQVIRUPLQJ ���� ���� ���� ���� ���� ���

DEVWUDFWHG DEVWUDFWHG ���� ���� ���� ���� ���� ���

WUDQVIRUPLQJ

ILQH�WR�
FRDUVH

DEVWUDFWHG

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ���
ILQH�WR�
FRDUVH

WUDQVIRUPLQJ

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ���

&���	�
)RUWUDQ

IL[HG

IL[HG ���� ���� ���� ���� ���� ���
DEVWUDFWHG ���� ���� ���� ���� ���� ���

WUDQVIRUPLQJ
���� ���� ���� ���� ���� ���

DEVWUDFWHG DEVWUDFWHG ���� ���� ���� ���� ���� ���

WUDQVIRUPLQJ

ILQH�WR�
FRDUVH

DEVWUDFWHG

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ���
ILQH�WR�
FRDUVH

WUDQVIRUPLQJ

���� ���� ���� ���� ���� ���

FRDUVH�WR�
ILQH ���� ���� ���� ���� ���� ���

WZR�ZD\ ���� ���� ���� ���� ���� ����

3URG��6FRUH�䌋 �� ��� ��� ��� ����

Figure 5.1: Interactive tool for productivity examination.

1

2
Matrix is publicly accessible.

�44

Example Application: NICAM Physics

Runtime [s]
Reference, 
2x 14-core

Broadwell [1]
0.595

Hybrid,  
2x 14-core

Broadwell [2]
0.941

Hybrid,  
1x P100 GPU [3] 0.232

• Cloud microphysics
• Precipitation of rain, snow, graupel
• 111 loops to parallelize
• Due to timing issues and influenza: Roughly one week to work on this

benchmark
• Hours logged: ~31.3.

number of lines of code:

�45

6. Conclusion

Introduction Method Application Performance Method
Comparison Conclusion

�466. Conclusion

Summary

✓new granularity abstraction and memory layout
transformation method

✓ applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required for
a full scale run with real data

✓method unique in increasing productivity for porting
coarse-grained codes to GPU

Contributions

Goal
✓GPU port for “ASUCA” NWP model in Fortran with minimal

code divergence / minimal learning

✓ paradigm shift towards throughput oriented design
✓GPUs attractive for NWP (high mem. bandwidth)
✓ productivity and maintainability of GPU approaches lacking

Background

Motivation
✓Many of today’s NWP- and climate models cannot make

efficient use of high-throughput architectures. We want
to find and prove easily adoptable approach.

�476. Conclusion

On all previous projects applying high-throughput architectures to NWP
and climate models [27]:
“All these approaches were effectively addressing fine-
grained parallelism in some way or other without
addressing coarser grained concurrency, and all involved
various levels of "intrusion" into code, from adding/
changing codes, to complete rewrites or translations.”

Prof. Bryan Lawrence
Professor of Weather and Climate Computing
Director of Models and Data @ NCAS

[27] Lawrence, Bryan N., et al. "Crossing the Chasm: How to develop weather and climate models for next
generation computers?”, under review for Geosci. Model Dev. (2017).

�486. Conclusion

On how ACME model (DOE) cannot share a single source code for
CPU and GPU due to register pressure[16]:
“The only remedy for this at present is to break the kernel
up into multiple kernels. (…) On the CPU one would want
to keep an element loop fused together for caching
reasons.”

Dr. Matthew R. Norman
Computational Climate Scientist
Oak Ridge National Laboratory

[16] Norman, Matthew R., Azamat Mametjanov, and Mark Taylor. "Exascale Programming Approaches for the
Accelerated Model for Climate and Energy." (2017).

�496. Conclusion

Concluding Remarks

All previous projects porting NWP and climate models to high-
throughput architectures had to choose between

complete rewrite (maximum learning),
code divergence (poor maintainability),
efficiency loss on at least one architecture (poor performance).

This work shows a new approach, which has many potential
applications beyond GPU and beyond NWP.

Hybrid Fortran is Open Source and can be applied directly where
suitable.
Method as documented can be replicated in other applications,
even if Hybrid Fortran is not used.

�50

Outlook
NVIDIA introduced DGX-2 - a 400k USD GPU system
Thesis: Operational 2km ASUCA on a single DGX-2 possible

16x Tesla V100s totaling 512GB HBM with unified address space
Halo communication entirely through 900 GB/s NVSwitch

Thank you for your attention.

�52

[1] Bjerknes, Vilhelm. "Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik." Meteor. Z. 21 (1904): 1-7.
[2] Woolard, Edgar W. "LF Richardson on weather prediction by numerical process." Monthly Weather Review 50.2 (1922): 72-74.
[3] Lynch, Peter. “Richardson’s forecast: What went wrong?” NOAA NWP 50 (2004).
[4] Courant, Richard, Kurt Friedrichs, and Hans Lewy. "Über die partiellen Differenzengleichungen der mathematischen Physik." Mathematische annalen 100.1
(1928): 32-74.
[5] Charney, Jules G., Ragnar Fjörtoft, and J. von Neumann. "Numerical integration of the barotropic vorticity equation." Tellus 2.4 (1950): 237-254. 
[6] White, Andy A., et al. "Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi‐hydrostatic and non‐hydrostatic."
Quarterly Journal of the Royal Meteorological Society 131.609 (2005): 2081-2107.
[7] Kurowski, Marcin J., Wojciech W. Grabowski, and Piotr K. Smolarkiewicz. "Anelastic and compressible simulation of moist deep convection." Journal of the
Atmospheric Sciences 71.10 (2014): 3767-3787.
[8] Ishida, Junichi, et al. "Development of a new nonhydrostatic model ASUCA at JMA." CAS/JSC WGNE Research Activities in Atmospheric and Oceanic
Modelling 40 (2010): 0511-0512.
[9] Dennard, Robert H., et al. "Design of ion-implanted MOSFET's with very small physical dimensions." IEEE Journal of Solid-State Circuits 9.5 (1974):
256-268.
[10] Kuhn, Kelin J. "Moore's Law Past 32nm: Future Challenges in Device Scaling." Computational Electronics, 2009. IWCE'09. 13th International Workshop
on. IEEE, 2009.
[11] Garland, Michael, and David B. Kirk. "Understanding throughput-oriented architectures." Communications of the ACM 53.11 (2010): 58-66.
[12] Michalakes, John, and Manish Vachharajani. "GPU acceleration of numerical weather prediction." Parallel Processing Letters 18.04 (2008): 531-548.
[13] Govett, Mark, Jacques Middlecoff, and Tom Henderson. "Directive-based parallelization of the NIM weather model for GPUs." Accelerator Programming
using Directives (WACCPD), 2014 First Workshop on. IEEE, 2014.
[14] Shimokawabe, Takashi, Takayuki Aoki, and Naoyuki Onodera. "High-productivity framework on GPU-rich supercomputers for operational weather
prediction code ASUCA." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014.
[15] Fuhrer, Oliver, et al. "Towards a performance portable, architecture agnostic implementation strategy for weather and climate models." Supercomputing
frontiers and innovations 1.1 (2014): 45-62.
[16] Norman, Matthew R., Azamat Mametjanov, and Mark Taylor. "Exascale Programming Approaches for the Accelerated Model for Climate and
Energy." (2017).

References

�53

[17] Briegleb, Bruce P. "Delta‐Eddington approximation for solar radiation in the NCAR Community Climate Model." Journal of Geophysical Research:
Atmospheres 97.D7 (1992): 7603-7612.
[18] Goody, R. M. "A statistical model for water‐vapour absorption." Quarterly Journal of the Royal Meteorological Society 78.336 (1952): 165-169.
[19] Kiehl, J. T., and Charles S. Zender. "A prognostic ice water scheme for anvil clouds." WMO Publications TD (1995): 167-188.
[20] Kaufman, Y. J., et al. "Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing." Geophysical Research Letters 28.8
(2001): 1479-1482.
[21] Nakanishi, Mikio, and Hiroshi Niino. "An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification." Boundary-layer
meteorology 112.1 (2004): 1-31.
[22] Beljaars, A. C. M., and A. A. M. Holtslag. "Flux parameterization over land surfaces for atmospheric models." Journal of Applied Meteorology 30.3 (1991):
327-341.
[23] Clément, Valentin. "CLAW Fortran Compiler Documentation". 2017
[24] Lapillonne, Xavier, and Oliver Fuhrer. "Using compiler directives to port large scientific applications to GPUs: An example from atmospheric science."
Parallel Processing Letters 24.01 (2014): 1450003.
[25] Edwards, H. Carter, Christian R. Trott, and Daniel Sunderland. "Kokkos: Enabling manycore performance portability through polymorphic memory access
patterns." Journal of Parallel and Distributed Computing 74.12 (2014): 3202-3216.
[26] Torres, Raul, et al. "ICON DSL: A domain-specific language for climate modeling." International Conference for High Performance Computing, Networking,
Storage and Analysis, Denver, Colo. 2014.
[27] Lawrence, Bryan N., et al. "Crossing the Chasm: How to develop weather and climate models for next generation computers?”, under review for Geosci.
Model Dev. (2017).

References

�54

NWP Models

1. Introduction

1. Introduction 17

Original Equations by
Bjerknes V.

Non-hydrostatic deep
equations

Quasi-hydrostatic
equations

Non-hydrostatic shallow
equations

Hydrostatic primitive
equations

G H

S S

H

Figure 1.1: Interrelations of atmospheric models with respect to their approxi-
mations.

UK Met O�ce deserve mentioning here, as they have introduced a fully com-
pressible deep-atmosphere non-hydrostatic weather model already in 2005 [32].
We anticipate that due to growing stability issues with higher grid resolutions
and thanks to the steadily increasing computational performance, NWP mod-
els in the coming years will increasingly resemble the original vision of Vilhelm
Bjerknes.

1.3.2 Microscale Phenomena

Today’s weather prediction models have achieved resolutions in the range of
one to two kilometers between grid cells, allowing the simulation of mesoscale
phenomena as part of the dynamical solvers (commonly referred to as “dynamical
core”). Smaller scale phenomena (from molecular scale to hundreds of meters,
referred to as microscale) are estimated through various models called “physical
processes”, in a method called “parametrization”: physical processes generate
tendency values that are used in order to account for microscale phenomena in
the next grid cell average.

Irrespective of the achieved grid resolution, more fine-grained air motion is
always present in atmosphere, making the solution of prognostic equations for
such turbulence necessary to increase accuracy. Incorporating these turbulence
e↵ects creates unclosed equations, as found by Keller and Friedman in 1924 [33]
that must be dealt with by decoupling turbulence terms from the rest of the
system as a parametrization. Eddy viscosity models treat this part of the prob-
lem [34]. Other microscale phenomena requiring specific treatment are boundary
layer e↵ects due to terrain proximity, solar radiation, light absorption- and re-
flection as well as formation and movement of water substances. This section
outlines the modelling of these e↵ects.

Figure 1.1: Interrelations of atmospheric models with respect
to their approximations according to White et al.

Approximations:
Spherical-geopotential (G): Gravity without horizontal component
Shallow-atmosphere (S)
➡ Gravitation constant with distance from surface
➡ Finer vertical vs. horizontal resolution (aspect ratio)
➡ Mixed implicit/explicit iteration schemes used to avoid inefficiently short time steps

Hydrostatic (H): Atmosphere horizontally compressible, vertically incompressible
➡ Sound waves filtered

�55

What is ASUCA?
``Asuca is a System based on a Unified Concept for Atmosphere''
fully compressible, non-hydrostatic weather prediction model
regional scale - as depicted in Figure 1.2
one of main operational forecast models in Japan, in production since 2014
spatial discretization: finite-volume method on Arakawa-C-type
rectangular grid

k-coordinates are terrain-following
general horizontal coordinates, with lat/lon and Lambert conformal conic
projections available

time discretization:
third-order Runge-Kutta based iteration scheme for advection and
Coriolis force
time-splitting method, employing secondary third-order Runge-Kutta
iteration with short time step for sound- and gravity waves

vertical advection of water substances solved using separate time step for
each column using separate Courant-Friedrichs-Lewy convergence
condition
vertical-only models for parametrization of radiation, planetary boundary
layer and surface physical processes

1. Introduction

ASUCA NWP Model

1. Introduction 21

Figure 1.2: ASUCA’s model simulation boundaries.

model is based on general coordinates, allowing transformations for both latitude
/ longitude- as well as Lambert conformal conic projections. By convention, its
horizontal dimensions are named I and J, with K being the vertical dimension
[5] [51].

Dynamical processes are solved by using the finite-volume method. Since var-
ious physical processes require a higher vertical resolution, a non-homogeneous
vertical cell separation order of 103m is applied, in contrast to a 2-kilometer-
resolution applied in the horizontal domain. Since in an explicit method the
smallest spatial dimension determines the time step, a horizontally-explicit verti-
cally-implicit (HEVI) time stepping method is employed. Atmospheric waves,
advection as well as the Coriolis acceleration are solved using a time splitting
method as proposed by Wicker and Skamarock in 2002, combining a third-order
Runge-Kutta time integration scheme using a long time step for slower pro-
cesses (advection, Coriolis) with a secondary third-order Runge-Kutta iteration
for sound- and gravity waves [52]. Vertical advection of water substances (i.e.
precipitation) is solved using a separate time step for each column, based on the
Courant-Friedrichs-Lewy convergence condition [6] [53]. ASUCA is structured as
a dynamical core interfacing with physical processes through tendency variables,
as is common in NWP (see also the discussion in Section 1.3.2).

ASUCA’s dynamical core is bounded by memory bandwidth, as is common
for finite-volume and finite-di↵erence based spatial discretizations for dynamical
systems. It also constitutes a significant majority of the runtime in operational
settings [54] [55]. As described in Section 1.3.4, GPUs are thus an attractive
target architecture, with a memory bandwidth that is typically 5 to 7 times

Figure 1.2: ASUCA’s model
simulation boundaries

�56

As approximations show, available comp. performance has strong impact on
design of NWP models.
In Earth system models differentiate between dynamical- and physical
processes.

dynamics: phenomena large enough to model in-grid.
physics: phenomena too small for spatial grid resolution. Separate models
are computed, generating tendency values for dynamical time iteration
(parametrization).

Increase in comp. performance allows increasing grid resolution.
➡ Physical processes slowly migrate towards dynamical modelling.

During last decades this mainly applies to resolution of increasingly small
cloud formations in dynamical core.

Typically applied finite-volume and finite-difference based discretization
methods are bottlenecked by memory bandwidth in the dynamics.

➡ Progress in comp. performance and thus grid resolution leads to increasing
memory bandwidth pressure.

1. Introduction

NWP and Computational Performance

�57

GPUs for Numerical Weather Prediction

1. Introduction

GPUs offer high memory bandwidth, which is in high demand in NWP.
➡ GPUs are an attractive target architecture.
Major problems to solve for existing regular grid NWP codes:

Memory layout needs change
Code granularity in physical processes too coarse for GPU
Extending device data region to entire time integration

Requires GPU port of all processes run in simulation
Ensures minimal communication across slow bus between host and
device

Existing methods to solve these problems:
Only apply GPU to dynamical core or smaller parts of physics.
Rewrite Fortran code using C++ templates for architecture specialization.
Code divergence between CPU and GPU to solve granularity issues.

➡ Unsatisfactory to maintain a unified, coherent and efficient code base in
Fortran (the standard in NWP)

➡ For ASUCA, a solution with none of these drawbacks was sought.

�58

GPU Computing - Programming Model

1. Introduction

1. Introduction 9

three times as much as on GPU, more so if we include the cost of working
memory in the calculation (which is included in the listed GPU price but
excluded on CPU). In terms of bandwidth, NVIDIA’s flagship GPUs have
a six-fold advantage in absolute terms and more than an 8-fold advantage
per dollar spent over the fastest current Intel CPU.

4. Due to a relative stagnation of memory bandwidth coupled with the quickly
increasing computational throughput, the system balance for FLOP per
Byte is now three times higher on CPU vs. GPU. To achieve system
balance, a Xeon 8180 requires 144 (or equivalent) 64-bit floating point op-
erations per 64-bit value read or stored on the working memory - a rare
occurrence in most algorithms, resulting in most applications being con-
strained by the memory bandwidth on this particular CPU, thus lowering
the achievable performance according to the Roofline model.

1.2.2 Programming Model

In Section 1.2.1 we have concluded that, in theory, CPU and GPU are today sim-
ilar at least in their theoretical computational throughput. In terms of program-
ming models, significant di↵erences can be observed from the two architectures
however. In this section, the GPU programming model is outlined in contrast
to its equivalent on CPU, i.e. CPU code that is written towards use in a HPC
context.

Parallelization

Consider the following kernel, which is inspired by code modelling physical pro-
cesses, as found in atmospheric simulations.

Listing 1.1: Sample kernel, illustrating the di↵erences in the CPU and GPU
programming models.

do j = 1, ny
do i = 1, nx

if (b(i,j)) then
do k = nz - 1, 1, -1

a(k,i,j) = a(k+1,i,j) * exp(- sqrt(gamma(k,i,j)) * tau)
end do

else
do k = 1, nz - 1

a(k,i,j) = 0.0d0
end do

end if
end do

end do

Listing 1.1 shows a calculation that is both computationally intensive (square
root and exponential calculation per point in a three dimensional grid) as well

CPU vector programming: single instruction, multiple data (SIMD)
Vectorization highly sensitive to data dependent branching and loop ordering
- example shown below difficult or impossible to vectorize

GPUs: single instruction, multiple threads (SIMT)
Branching, early returns and backwards jumps (inner loops) supported for
each thread in hardware architecture
Vectorization thus insensitive to loop ordering and branching

GPUs do not support real context switching within kernels - all function calls
are inlined, thus share register scope.
➡ Due to register pressure as well as practicality, fine-grained kernels are

required on GPU.

�59

GPU Computing - Peak Performance

1. Introduction

Recent CPUs have caught up in theoretical throughput -
theoretical GFLOP/s per Watt of some CPUs now two thirds
of current GPUs.
However: Memory bandwidth shows a clear advantage
for GPU - e.g. an 8.2x advantage in peak bandwidth per
Dollar for latest HPC targeted models. 
(advantage even stronger for GPU if we include memory pricing in calculation)

Tables 1.1 and 1.2: Intel Xeon 8180 (Skylake-SP) vs. NVIDIA Tesla P100 (Pascal)

1. Introduction 8

Table 1.1: Comparison of the latest generation Intel CPU (“Xeon 8180 Skylake-
SP”) and NVIDIA GPU (“Tesla P100”) intended for HPC purposes. “SM”
stands for “streaming multiprocessor”.

Characteristic CPU GPU
Vector length 16 32

(double precision)
Core- or SM count 28 60
Clock frequency 2.5 GHz 1.3 GHz

Memory bandwidth 119 GB/s 720 GB/s
Thermal design power 205W 300W

Die size ⇠ 700 mm

2 610 mm

2

List price $10,009 $7374
(including 16 GB HBM2 Memory)

Substituting 2 as the maximum number of FP operations per instruction
(fused multiply-add), one arrives at performance metrics as listed in Table 1.2.

Table 1.2: Performance metrics for the latest generation Intel CPU (“Xeon 8180
Skylake-SP”) and NVIDIA GPUs (“Tesla P100”, PCI-E version) intended for
HPC purposes.

Metric CPU GPU
Peak GFLOP/s 2240 5004
(double precision)
GFLOP/s per Watt 10.9 16.7
GFLOP/s per Dollar 0.22 0.68

Memory bandwidth per Dollar 11.89 MB/s 97.64 MB/s
FLOP/Byte system balance 18 6

In addition, one of the earlier di↵erentiating factors of GPUs was the de-
creased significance of caches and thus increase of die space allocated to com-
putational floating-point units (FPU). A merging between the design spaces of
GPUs and CPUs (as shown in the above comparison with recent Skylake-SP
releases) should also show a consolidation of these di↵erences.

Taking these metrics into consideration one can observe the following:

1. After years of competition between the two architectural philosophies in
the space of HPC, on first sight they now look similar. Today’s available
CPUs have caught up to GPU significantly in theoretical throughput within
a factor of two, for comparable die sizes.

2. In the GFLOP/s per Watt metric, the most e�cient CPUs have caught up
even more, at around two thirds of current GPUs.

3. The main di↵erentiators today are cost and memory bandwidth. In the
above comparison, computational performance on CPU costs more than

1. Introduction 8

Table 1.1: Comparison of the latest generation Intel CPU (“Xeon 8180 Skylake-
SP”) and NVIDIA GPU (“Tesla P100”) intended for HPC purposes. “SM”
stands for “streaming multiprocessor”.

Characteristic CPU GPU
Vector length 16 32

(double precision)
Core- or SM count 28 60
Clock frequency 2.5 GHz 1.3 GHz

Memory bandwidth 119 GB/s 720 GB/s
Thermal design power 205W 300W

Die size ⇠ 700 mm

2 610 mm

2

List price $10,009 $7374
(including 16 GB HBM2 Memory)

Substituting 2 as the maximum number of FP operations per instruction
(fused multiply-add), one arrives at performance metrics as listed in Table 1.2.

Table 1.2: Performance metrics for the latest generation Intel CPU (“Xeon 8180
Skylake-SP”) and NVIDIA GPUs (“Tesla P100”, PCI-E version) intended for
HPC purposes.

Metric CPU GPU
Peak GFLOP/s 2240 5004
(double precision)
GFLOP/s per Watt 10.9 16.7
GFLOP/s per Dollar 0.22 0.68

Memory bandwidth per Dollar 11.89 MB/s 97.64 MB/s
FLOP/Byte system balance 18 6

In addition, one of the earlier di↵erentiating factors of GPUs was the de-
creased significance of caches and thus increase of die space allocated to com-
putational floating-point units (FPU). A merging between the design spaces of
GPUs and CPUs (as shown in the above comparison with recent Skylake-SP
releases) should also show a consolidation of these di↵erences.

Taking these metrics into consideration one can observe the following:

1. After years of competition between the two architectural philosophies in
the space of HPC, on first sight they now look similar. Today’s available
CPUs have caught up to GPU significantly in theoretical throughput within
a factor of two, for comparable die sizes.

2. In the GFLOP/s per Watt metric, the most e�cient CPUs have caught up
even more, at around two thirds of current GPUs.

3. The main di↵erentiators today are cost and memory bandwidth. In the
above comparison, computational performance on CPU costs more than

1. Introduction 7

other benefits, allowed the computation of two 32-bit floating point values simul-
taneously (thus having a vector size of two). Over time, the throughput of new
processors has kept growing faster than latency has decreased, through increas-
ing use of vector instructions (also called “single instruction, multiple data” or
SIMD) and independent threads on the same microchip (“core” count) - under
the condition that software is designed to make use of these techniques. Due to
the pressure of existing applications however, CPU designers were for the most
part not allowed to increase latency between generations in order to achieve even
higher throughput (i.e. by reducing the complexity of cores, allowing for an even
higher number of cores on the same die size) [11].

In contrast, GPUs are a type of microchip designed for high throughput from
the beginning, usually sacrificing low latency. Even though modern microchips
have transistor counts on the order of 109 to 1010, it is important to recognize
that every transistor still has a thermal cost and occupies space on the chip die,
thus needs to be budgeted carefully towards a specific goal. When designing
a Von-Neumann-type computing system towards throughput, this essentially
means allocating as much die space as possible to computational units while
keeping enough memory lanes, caches, registers and work schedulers in order to
balance the system for workloads that the computing market currently demands
of such a throughput maximising co-processor. Such workloads today typically
include computer graphics, cryptographic hash function solvers (e.g. Bitcoin
mining) and numerical solvers (e.g. grid based methods, particle methods or
neural network based methods).

Due to the NVIDIA corporation’s current market dominance in GPUs used
for HPC in general, and their prominence within the computing services at Tokyo
Institute of Technology (i.e. in the TSUBAME supercomputer series) in partic-
ular, this thesis will focus on NVIDIA GPUs - however many of the concepts
introduced here apply to other GPU brands as well, albeit often with di↵erent
terminology and programming interfaces.

Table 1.1 shows a basic hardware performance comparison of the latest CPUs
and GPUs as of 2017. We concentrate on double precision (64-bit) floating point
(FP) performance here, since this is the most important computational type for
atmospheric simulations.

The following formula gives the theoretical peak double precision FP perfor-
mance on these two systems:

Ppeak =
Ncores · lvector · fclock

CPImin
, (1.1)

with Ncores being the number of cores, lvector the vector length, fclock the
clock frequency and CPImin the minimum cycles per instruction.

�60

GPU Computing - Device Memory

1. Introduction

CPU

Host
Memor

GPU11 GB/s

Device
Memory

GPU comes with separate memory system to enable high bandwidth.
For applications to achieve a high performance, programmer
generally needs to keep track about memory a variable resides -
e.g. OpenACC data directives or CUDAMemCopy instructions.

GPUs are particular about what order memory should be accessed in
order to allow coalescence. Innermost parallel thread index (i in
below example) should be mapped to unit stride.

This stands in contrast to CPUs where innermost loop index (k in
below example) may be optimal for unit stride.
Performant storage order may differ between CPU and GPU.

1. Introduction 9

three times as much as on GPU, more so if we include the cost of working
memory in the calculation (which is included in the listed GPU price but
excluded on CPU). In terms of bandwidth, NVIDIA’s flagship GPUs have
a six-fold advantage in absolute terms and more than an 8-fold advantage
per dollar spent over the fastest current Intel CPU.

4. Due to a relative stagnation of memory bandwidth coupled with the quickly
increasing computational throughput, the system balance for FLOP per
Byte is now three times higher on CPU vs. GPU. To achieve system
balance, a Xeon 8180 requires 144 (or equivalent) 64-bit floating point op-
erations per 64-bit value read or stored on the working memory - a rare
occurrence in most algorithms, resulting in most applications being con-
strained by the memory bandwidth on this particular CPU, thus lowering
the achievable performance according to the Roofline model.

1.2.2 Programming Model

In Section 1.2.1 we have concluded that, in theory, CPU and GPU are today sim-
ilar at least in their theoretical computational throughput. In terms of program-
ming models, significant di↵erences can be observed from the two architectures
however. In this section, the GPU programming model is outlined in contrast
to its equivalent on CPU, i.e. CPU code that is written towards use in a HPC
context.

Parallelization

Consider the following kernel, which is inspired by code modelling physical pro-
cesses, as found in atmospheric simulations.

Listing 1.1: Sample kernel, illustrating the di↵erences in the CPU and GPU
programming models.

do j = 1, ny
do i = 1, nx

if (b(i,j)) then
do k = nz - 1, 1, -1

a(k,i,j) = a(k+1,i,j) * exp(- sqrt(gamma(k,i,j)) * tau)
end do

else
do k = 1, nz - 1

a(k,i,j) = 0.0d0
end do

end if
end do

end do

Listing 1.1 shows a calculation that is both computationally intensive (square
root and exponential calculation per point in a three dimensional grid) as well

119 GB/s 720 GB/s

�613. Application

Column-wise Courant-Friedrichs-Lewy Convergence

3. Application to Numerical Weather Prediction 65

Column-wise Courant-Friedrichs-Lewy Convergence

sediment time integration

sediment run run sed. parallel region

halo exchange

precipitation z-tendency
moment x

z-tendency
moment y

z-tendency
moment z

tendency
density / pot.
temperature

calculate z-
tendency

calculate z-
tendency

calculate z-
tendency

calculate z-
tendency

run sed. pre

run sed. post

mp terminal
vel. pre

sed. run sub

timeset
terminal vel.

timeset pre
sed.

timeset sed.

dynamics
sed.

RKshort dtshort∫ diagnose sed.

physics sed.

dynamics
sed.

flux
precipation

diagnose sed.

mp terminal
vel.

vel. r

terminal vel.
to wd

wd to wdrop

flux
calculation

positive run

routine
routine with
GPU kernelLegend

CFL
convergence
reduction

routine with
CPU kernel

routine with
hybrid kernel

Figure 3.4: Granularity transformation of physical processes call tree for GPU.

The time splitting method employed for the water substance sedimentation
process requires some specific treatment in order to achieve a fine-grained par-
allelization for GPU, due to data-dependent per-column branching based on the
Courant-Friedrichs-Lewy convergence condition. Figure 3.4 shows the call tree
and kernel structure of the sedimentation code in Hybrid ASUCA. As in other
physical processes, a single CPU parallelization is split into multiple GPU ker-
nels. The following listing shows the timestep loop used to port per-column
time splitting to GPU. A reduction kernel is employed to evaluate the values of
the array cfl_reached, which is privatized in IJ for GPU using the method de-
scribed in Section 2.3.3. In case of all columns converging, the time integration is
exited in order to avoid unnecessary kernel launches. In addition, cfl_reached
is passed down to all kernels called within the time integration for a fine-grained
breaking of GPU threads in case only a subset of columns has converged.

Listing 3.3: Sedimentation timestep with CFL convergence condition.

@domainDependant{
attribute(autoDom , present), domName(i,j), domSize(nx ,ny)

}
cfl_reached , dt_rk_rest , ...
@end domainDependant

�623. Application

Physical Processes
Original physical process library from JMA adapted for GPU (MSM0705 model):

Radiation based on 18-band model by Briegleb [17].
Optical cloud absorption based on statistical model by Goody [18] with thin cloud correction by Kiehl and
Zehnder [19].
Transmission function for particle absorption uses look-up table method from empirical data gathered by NASA
Goddard [20].
For efficient use of GPU, memory footprint of indirect radiation effects was reduced by 10x by using ad-hoc
computations for each long-wave band rather than storing temporary data of all bands.

A Mellor-Yamada based planetary boundary layer model, improved by Nakanishi and Hiino, is adopted [21].
Wind momentum-, sensible heat- and latent heat surface fluxes are simulated based on Beljaars and Holtstag
model [22].

Kessler-type warm rain model is implemented for GPU.
Hybrid Fortran’s adaptive parallelization granularity used to generate GPU version.

[17] Briegleb, Bruce P. "Delta‐Eddington approximation for solar radiation in the NCAR Community Climate Model." Journal of Geophysical
Research: Atmospheres 97.D7 (1992): 7603-7612.
[18] Goody, R. M. "A statistical model for water‐vapour absorption." Quarterly Journal of the Royal Meteorological Society 78.336 (1952): 165-169.
[19] Kiehl, J. T., and Charles S. Zender. "A prognostic ice water scheme for anvil clouds." WMO Publications TD (1995): 167-188.
[20] Kaufman, Y. J., et al. "Absorption of sunlight by dust as inferred from satellite and ground‐based remote sensing." Geophysical Research
Letters 28.8 (2001): 1479-1482.
[21] Nakanishi, Mikio, and Hiroshi Niino. "An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification."
Boundary-layer meteorology 112.1 (2004): 1-31.
[22] Beljaars, A. C. M., and A. A. M. Holtslag. "Flux parameterization over land surfaces for atmospheric models." Journal of Applied Meteorology
30.3 (1991): 327-341.

Hybrid ASUCA: Implementation Status

diagnose

physics

surf. diag.

min/max/ave

output

diag.

phys.

hdiff

dynamics

sediment

dtlong∫
diagnose

monitflux

RKshort dtshort∫ RKshort dtshort∫

RKshort dtshort∫
HEVIdynamics

advection

coriolis

curvature

n. diffusion

rayleigh

pp

lbc

diagnose

implementation finished, error <1E-10

outside of scope

microphysic

lbc

rad pp

convection

surf. slab

pbl pp

qxdiff

pbl coupler

�64

Numerical Weather Prediction (NWP)

1. Introduction

Bjerknes first formalized weather
prediction problem in 1904 [1].
Lewis Fry Richardson first attempted
numerical weather prediction during WW1
using human computers - unsuccessfully
due to numerical instability [2][3].
Courant, Friedrichs and Lewy provided
breakthroughs in numerical stability
analysis in 1928 [4].
Charney formulated the first practical
NWP model. Together with Fjörtoft and
Von Neumann this model was adapted for
automatic computers after WW2 [5].

Vilhelm Bjerknes
Image: Bjerknes family, CC-BY-SA

Lewis Fry Richardson
Image: Public Domain

Hans Lewy
Image: George M. Bergman, GFDL

Jule Charney
Image: © Nora Rosenbaum, 1976

John von Neumann
Image: Public Domain

[1] Bjerknes, Vilhelm. "Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik." Meteor. Z.
21 (1904): 1-7.
[2] Woolard, Edgar W. "LF Richardson on weather prediction by numerical process." Monthly Weather Review 50.2 (1922): 72-74.
[3] Lynch, Peter. “Richardson’s forecast: What went wrong?” NOAA NWP 50 (2004).
[4] Courant, Richard, Kurt Friedrichs, and Hans Lewy. "Über die partiellen Differenzengleichungen der mathematischen Physik."
Mathematische annalen 100.1 (1928): 32-74.
[5] Charney, Jules G., Ragnar Fjörtoft, and J. von Neumann. "Numerical integration of the barotropic vorticity equation." Tellus 2.4
(1950): 237-254. 

�65

NWP Models

1. Introduction

Equations:
1. Hydrodynamic equations of motion in 3D

➡ 3 equations, differential relations among velocity components, density, air
pressure

2. Mass continuity of air and water
3. State equation for ideal gases
4. Conservation of energy
➡ 7 equations, 7 unknowns, thus solvable

Dynamically modelled phenomena in free atmosphere:
Advection
Diffusion
Gravity waves
Coriolis force / Rossby waves
Sound waves

No meteorological relevance but relevant for stable solutions of large scale,
high-Mach-number atmospheric flows.
Time-splitting schemes used to allow sound wave resolution in fully compressible
models.

�66

NWP Models

1. Introduction

1. Introduction 17

Original Equations by
Bjerknes V.

Non-hydrostatic deep
equations

Quasi-hydrostatic
equations

Non-hydrostatic shallow
equations

Hydrostatic primitive
equations

G H

S S

H

Figure 1.1: Interrelations of atmospheric models with respect to their approxi-
mations.

UK Met O�ce deserve mentioning here, as they have introduced a fully com-
pressible deep-atmosphere non-hydrostatic weather model already in 2005 [32].
We anticipate that due to growing stability issues with higher grid resolutions
and thanks to the steadily increasing computational performance, NWP mod-
els in the coming years will increasingly resemble the original vision of Vilhelm
Bjerknes.

1.3.2 Microscale Phenomena

Today’s weather prediction models have achieved resolutions in the range of
one to two kilometers between grid cells, allowing the simulation of mesoscale
phenomena as part of the dynamical solvers (commonly referred to as “dynamical
core”). Smaller scale phenomena (from molecular scale to hundreds of meters,
referred to as microscale) are estimated through various models called “physical
processes”, in a method called “parametrization”: physical processes generate
tendency values that are used in order to account for microscale phenomena in
the next grid cell average.

Irrespective of the achieved grid resolution, more fine-grained air motion is
always present in atmosphere, making the solution of prognostic equations for
such turbulence necessary to increase accuracy. Incorporating these turbulence
e↵ects creates unclosed equations, as found by Keller and Friedman in 1924 [33]
that must be dealt with by decoupling turbulence terms from the rest of the
system as a parametrization. Eddy viscosity models treat this part of the prob-
lem [34]. Other microscale phenomena requiring specific treatment are boundary
layer e↵ects due to terrain proximity, solar radiation, light absorption- and re-
flection as well as formation and movement of water substances. This section
outlines the modelling of these e↵ects.

Figure 1.1: Interrelations of atmospheric models with respect to their
approximations according to White et al.

Approximations:
Spherical-geopotential (G): Gravity without horizontal component
Shallow-atmosphere (S): Gravitation constant with distance from surface
Hydrostatic (H): Atmosphere horizontally compressible, vertically incompressible
➡ Sound waves filtered

�67

What is ASUCA?
``Asuca is a System based on a Unified Concept for
Atmosphere''
fully compressible, non-hydrostatic weather prediction model

regional scale - as depicted in Figure 1.2
one of main operational forecast models in Japan, in
production since 2014
spatial discretization: finite-volume method on Arakawa-C-
type rectangular grid
time discretization:

third-order Runge-Kutta based iteration scheme for
advection and Coriolis force
time-splitting method, employing secondary third-order
Runge-Kutta iteration with short time step for sound- and
gravity waves

vertical-only models for parametrization of radiation,
planetary boundary layer and surface physical processes

1. Introduction

ASUCA NWP Model

1. Introduction 21

Figure 1.2: ASUCA’s model simulation boundaries.

model is based on general coordinates, allowing transformations for both latitude
/ longitude- as well as Lambert conformal conic projections. By convention, its
horizontal dimensions are named I and J, with K being the vertical dimension
[5] [51].

Dynamical processes are solved by using the finite-volume method. Since var-
ious physical processes require a higher vertical resolution, a non-homogeneous
vertical cell separation order of 103m is applied, in contrast to a 2-kilometer-
resolution applied in the horizontal domain. Since in an explicit method the
smallest spatial dimension determines the time step, a horizontally-explicit verti-
cally-implicit (HEVI) time stepping method is employed. Atmospheric waves,
advection as well as the Coriolis acceleration are solved using a time splitting
method as proposed by Wicker and Skamarock in 2002, combining a third-order
Runge-Kutta time integration scheme using a long time step for slower pro-
cesses (advection, Coriolis) with a secondary third-order Runge-Kutta iteration
for sound- and gravity waves [52]. Vertical advection of water substances (i.e.
precipitation) is solved using a separate time step for each column, based on the
Courant-Friedrichs-Lewy convergence condition [6] [53]. ASUCA is structured as
a dynamical core interfacing with physical processes through tendency variables,
as is common in NWP (see also the discussion in Section 1.3.2).

ASUCA’s dynamical core is bounded by memory bandwidth, as is common
for finite-volume and finite-di↵erence based spatial discretizations for dynamical
systems. It also constitutes a significant majority of the runtime in operational
settings [54] [55]. As described in Section 1.3.4, GPUs are thus an attractive
target architecture, with a memory bandwidth that is typically 5 to 7 times

Figure 1.2: ASUCA’s model
simulation boundaries

