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NWP and Computational Performance

+ Increase in computational performance allows increasing grid
resolution.

+ During last decade this allows resolution of increasingly
small cloud formations in dynamical core.

- Typically applied finite-volume and finite-difference based
discretization methods are bottlenecked by memory
bandwidth in the dynamics.

= Hardware architectures with high memory bandwidth are
seeked.
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... however Dennard scaling does not.

Dennard scaling: Power density of micro transistors
proportional to area.

- Clock frequency/single threaded perf. scales inverse
proportionally to transistor size

Since 90nm process technology (~2004-2005), Dennard
scaling does not hold anymore.

Leakage currents increasingly limit advancements in single
threaded performance.
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Latency- versus Throughput Oriented Processing

Latency: Time elapsed between initiation and completion of a
task.

Throughput: Total amount of work completed per unit time.

+ Due to end of Dennard scaling:

= shift from latency-oriented processor design to throughput-
oriented

= applications only profit when adapted accordingly

1. Introduction 6



GPU Computing

+ Graphics Processing Units (GPUs) are a popular type of
throughput-oriented processors.

+ Today has many applications outside of graphics.

- Applications need to be highly parallelizeable, as GPUs
have a high latency to complete a single task compared to
CPUs.

1. Introduction



GPU Computing - High memory bandwidth
- Support for branching, 64bit FP

- Fine-grained parallelism
- Memory access performance highly sensitive

grid to memory layout
thread - Different involved memories require
management

thread block
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ASUCA NWP Model

What is ASUCA?

- Asuca is a System based on a Unified Concept for
Atmosphere"

regional scale - as depicted in Figure 1.2

- one of main operational forecast models in Japan, in
production since 2014

- spatial discretization: finite-volume method on Arakawa-C-
type rectangular grid

- time discretization:

- third-order Runge-Kutta based iteration scheme for
advection and Coriolis force

. time-splitting method, employing secondary third-order
Runge-Kutta iteration with short time step for sound- and
gravity waves

- vertical-only models for parametrization of radiation,
planetary boundary layer and surface physical processes
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- fully compressible, non-hydrostatic weather prediction mods,,.
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Figure 1.2: ASUCA’s model
simulation boundaries
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GPUs for Numerical Weather Prediction

- GPUs offer high memory bandwidth, which is in high demand in NWP.

= GPUs are an attractive target architecture.
- Major problems to solve for existing regular grid NWP codes:
- Memory layout needs change
- Code granularity in physical processes too coarse for GPU
- Existing methods to solve these problems:
. Only apply GPU to dynamical core.

- Rewrite Fortran code using C++ templates for architecture
specialization.

- Code divergence between CPU and GPU to solve granularity issues.

- Unsatisfactory to maintain a unified, coherent and efficient code base
in Fortran (the standard in NWP)

- For ASUCA, a solution with none of these drawbacks was sought.
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Background

v paradigm shift towards throughput oriented design

v GPUs attractive for NWP (high mem. bandwidth)

v productivity and maintainability of GPU approaches
lacking

Motivation

v Many of today’s NWP- and climate models cannot
make efficient use of high-throughput architectures. We
want to find and prove easily adoptable approach.

Goal

v' GPU port for “ASUCA” NWP model in Fortran with
minimal code divergence / minimal learning

Contributions

O new granularity abstraction and memory layout
transformation method

0 applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required
for a full scale run with real data

0 method unique in increasing productivity for porting
coarse-grained codes to GPU

. Method

Granularity Abstraction

Memory Layout &
Regions

Code Transformation

L Method :
- Method ' Application 'Performance' Comparis on' Conclusion
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Assumptions for Design

- Mainly used data structure is Fortran arrays of different
dimensions and data types.

- Kernels are data parallel.

- Existing inter-node / inter-GPU communication code can
be reused.

2. Method
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ASUCA Code Structure

simulation
for t € [0,tend]:

physics run

dycore  forje[1,ny]:

S

fori e [1,nx]:

radiation

Legend

N ole—

> ]

surface

g @
@

.
routine ‘_p call

for x € [a, b]:
.. Statements ..

loop repeating
.. Statements ..
for each x € [a, b]

> [ |
planetary boundary

’ll.l—’

—

—>

| Q= S

= Physics difficult to port

shortwave rad.
for k € [1,nz]:

.. pointwise process ..

surf. flux

.. pointwise process ..

p.b. phi calc

.. pointwise process ..

J + Applying GPU only to dynamical core

requires expensive host-device-
communication for every timestep
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Key Problems

1. Code Granularity

Definition of granularity:
The amount of work done by one thread.

fine-grained: low amount of work per thread
coarse-grained: high amount of work per thread

Two types of granularity:
a) runtime defined
b) code defined

physics run
simulation dycore| | forje[1,ny]:
for t € [0,tend]: - for i e [1,nx]:

O "

shortwave rad.

—» forke[1,nz]:
.. pointwise process ..

radiation surf. flux

— .. pointwise process ..
surface
’I En

planetary boundary p.b. phi calc

’_
O > -
O

pu: s s ——3p .. POINtwise process ..
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Key Problems

2. Memory Layout

nx

WI’

S0 1 Y e

nx nx

nx
> | >

> |

simulation
for t € [0,tend]:

physics run
dycore  forje[1,ny]:

fori e [1,nx]:

Performant layout on CPU: Keep fast
varying vertical domain in cache — k-first
Example stencil in original code:
A_out(k,i,j) = A(k,i,j) + A(k,i-1,)) ...

GPU: Requires i-first or j-first for
coalesced access

shortwave rad.

—» forke[1,nz]:
.. pointwise process ..

radiation surf. flux

- -

— .. pointwise process ..
surface
’I En

g O

planetary boundary p.b. phi calc

pu: s s ——3p .. POINtwise process ..
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Hybrid Fortran

Main ideas:

- Allow efficient many-core GPU port while maintaining
multi-core CPU compatibility

- Delegate parallelization boilerplate to framework

- Allow multiple parallelization granularities for the same
code

- Transform memory layout for each target architecture

2. Method
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Parallelization & Granularity Abstraction

explicit parallelization -

orthogonal to allows multiple
sequential loops parallelization
doi=1. nx granularities
doj=1,ny [ @parallelRegion{
| ..pointwise code.. domName(i,j), domSize(nx,ny), appliesTo(CPU)
Y
| ..pointwise code..
Creates CUDA Fortran, OpenACC or CPU
multicore-OpenMP based parallelization,
depending on backend.
2. Method 17



4 )
routine ‘_> call

loop repeating

Example Physical Process 29

for x € [a, b]:

.. statements .. .. Statements ..
for each x € [a, b]
\, y
shortwave rad.
physics run — forke[1,nz]:

for t  [0,tend]: forie [1,nx]:

‘ radiation surf. flux

‘ ‘ P — .. pointwise process ..
' > surface ‘ |
‘ p-= n = '

planetary_beuﬁaéry p.b. phi calc

' — 5« » s——p .. pointwise process ..
1t= tile_land
example reference code from £ Gty > 0.0_s i)
call sf slab_flx land_ run(&
Surface ﬂUX ! ..._inpu_ts a_nd fu_rther tile variables omitted
& taux_ tile_ex(1lt), tauy_tile_ex(lt) &
& )
’ '?hatal parallillsmd nOt exposed at u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) *x 2 + tauy_tile_ex(lt) *x 2))
else
IS ayer O CO e taux_tile_ex(lt) = 0.0__r_size
= Coarse-gralned para”ellzatlon sa??_tllciler_tz};f'lttilj ?féorlfa%b_lsel:eomitted
end if
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Example Physical Process Using Hybrid Fortran

shortwave rad.

.. forke[1,nz]:
Ll € .. pW. proc.
[1,nx], PW- P
Legend [1,ny]
P . )
routine '—} call simulation
forte [O,tend]. dycore
for x € [a, b]: loop repeating
.. statements ..  statements .. ‘ > - Surf f|UX
for each x € [a, b] ‘ >
B . PW. proc.
i,j €
. execute (1.0
%) .. statements .. . ,‘[1',‘I"1y]
ij e S in parallel for each physics run diat
[1.nx], & i,j e [1,nx], [1,ny] radiation '
[1.ny] & if the executable is QU
? compiled for ij e surfa’éé
Otr;e{wise rtun . [1,nx], I F— | p.b. phi calc
';ir:ea, ements.. a single e [1,ny] p]anetary boundary —
’l n l_> . . . .
) €
[1,nx],
[1.ny]

-+ pointwise code reused

- code transformed to apply fine-
grained parallelism

- appliesTo clause to specify
parallelization target

- call graph transformed globally to
expose data parallelism at
required granularity

@parallelRegion{appliesTo (GPU), domName(i,j), domSize(nx,ny)?}
1t = tile__land
if (tlevr(lt) > 0.0__r_size) then
call sf_slab_flx_land_run(&
!' ... Iinputs and further tile variables omitted
& taux_tile_ex(1lt), tauy_tile_ex(lt) &
& )

u_f(lt) = sqrt(sqrt(taux_tile_ex(1lt) *x*x 2 + tauy_tile_ex(lt) *x*x 2))
else
taux_ tile_ex(1t) 0.0_r_size
tauy_ tile_ex(1t) 0.0__r_size
' ... further tile variables omitted
end if
!' ... sea tiles code and variable summing omitted
@end parallelRegion

2. Method
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Data Specifications

Data specifications:

- autoDom: extend existing data domain specification with parallel domain given by
@domainDependant directive.

- domName, domSize attributes specify horizontal extension of data domain
- present: data is already present on device.
- requires counterpart specification at data region boundaries with transferHere attribute

@domainDependant {domName(i,j), domSize(nx,ny), attribute (autoDom, present)}’
tlcvr , taux_ tile_ex, tauy_tile_ex, u_f
@end domainDependant

@parallelRegion{appliesTo (GPU), domName(i,j), domSize(nx,ny)}
1t = tile_land
if (tlcvr(lt) > 0.0_r_ size) then
call sf_ slab_flx land_ run(&
' ... inputs and further tile variables omitted
& taux_ tile_ex(1lt), tauy_tile_ex(1lt) &
& )

u_f(1lt) = sqrt(sqrt(taux_tile_ex(lt) ** 2 4+ tauy_tile_ex(lt) ** 2))

else
taux_tile _ex(lt) = 0.0 __r_ size
tauy__tile_ex(1lt) = 0.0_r_size
' ... further tile variables omitted
end if

' ... sea tiles code and variable summing omitted
@end parallelRegion

2. Method
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Transformed Code

Example surface flux kernel transformed with OpenACC backend.

OpenACC parallelization
data specifications

!'$acc kernels deviceptr(tauz_tile_exz) deviceptr(tauy_tile_exz) & "b|ocksize macros
!$accé deviceptr(tlcur) deviceptr (u_f)
!$acc loop independent vector (CUDA_BLOCKSIZESY)
outerParallellLoopO: do j=1,ny®—
!$acc loop independent wvector (CIDA—BEOCKSIZE_X)
do i=1,nx e—
!I' *x* loop body *x*xx*
1t = tile_land

— . parallel loops

if (tlcvr( AT(i,j,1t) )> 0.0_r_size) then horizontal domain
call sf_slab_flx_land_run (& extension of data
' ... dnputs and further tile wariables omitted
& taux_tile_ex( AT(i,j,1t) ), tauy_tile_ex( AT(i,j,1t) )
— &
& ) storage
u_f( AT(i,j,1t) )= sqrt(sqrt(taux_tile_ex( AT(i,j,1lt) D**x 2 + & ordering macro
& tauy_tile_ex( AT(i,j,1t) )x*x*x 2))
else
taux_tile_ex( AT(i,j,1t) )= 0.0_r_size
tauy_tile_ex( AT(i,j,1lt) )= 0.0_r_size line breaks
' ... further tile wariables omitted
end if
!' ... sea tiles code and wvartable summing omitted
end do

end do outerParallelLoopO
!$acc end kernels

2. Method
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Transformation Process

Hybrid Sources

Build Configuration

transform

global

analyze

information

global information -
applied to architecture

= ¢ implemented —>

3]
Fortran

Build Dependencies

Macro Definitions

=["]=

legend

- hybrid file - file with

CPU+GPU

version

¢ python @ output

@) GNU Make @ input

3

==

user facing

machine

facing
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Callgraph Analysis

CPU Version

dycore
simulation . | —L lateral /upper boundary > shortwave rad.
damp.
—>
surf. flux
radiation
surface
physics run. 1 ’ b"' d-
L . panetaiym oun arx
p.b. phi calc
Legend
4 . .
routine routine
outside inside

" region " region

routine ‘_» call

with
" region

GPU Version

dycore

simulation . | —L damp

.__

lateral /upper boundary

t

radiation

™ shortwave rad.

surf. flux

surface
physics run. > -

5 ‘ planetagy"l_)oundarx

p.b. phi calc
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Limitations

- code for programmable caches on GPU (“shared
memory”, “texture memory”) is not generated by tool.

- relies on standard subroutines, e.g. Fortran function
construct not supported for code running on GPU.

2. Method
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Contributions

3. Application

v' new granularity abstraction and memory layout
transformation method

1 applied to ASUCA, resulting in >3x speedup in ¢ Hyb”d ASUCA

kernel performance and >2x reduction in processors

required for a full scale run with real data |mp|ementat|0n
1 method unique in increasing productivity for porting «
coarse-grained codes to GPU ¢ PrOdUCt|V|ty ReSU |tS

. Method :
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Legend

Host

Time

GPU
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boundary
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Jump back
(repetition of
loop)

e ) !
assimilated real :
weather data !
L J ' -
( A s - ) long time step
setup o— initial data >
\ J
. 7
e 3 ( 2
output < output data ®
& J \ J
: { 3D to 1D interpolation, radiation-, planetary boundary & surface processes }
N\ a )
{ MPI communicate <4 tendency data >
Y, L y e a
' Runge Kutta (n = 3)
, (" )
; advection
' \ J
: e w
' coriolis force, curvature & damping
1 \_ J
1
' e N
, precipitation
] L Y,
{ MPI communicate } precipitation data J >
I -
short time step \
s \
Runge Kutta (n = 3)

[ MPI communicate

] < ‘ h. pressure data

horizontal pressure gradient
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[
»
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Parallelization

-

CPU

NXnode

)4

ny

>

Legend

grid

MPI rank domain

CPU thread & marchi
direction

. GPU thread block

—

NVYnode E’I NVYnode|

= |

ng
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Dynamical Core

- ASUCA’s dynamical core contains many “tight parallel loops”, i.e. fine-grained parallelism.

- CUDA Fortran compiler was most stable during development.

= Chosen as main backend.

= Transformed code must have separate routines per kernel.

= To facilitate tight parallel loops, Hybrid Fortran employs routine splitting.

= Existing code becomes compatible with CUDA Fortran backend.

Legend

Model
Object

is composed of

Module 1 <

3. Application

Routine 1

Routine 2

Specification
Region

Generic
Region

Early Exit
Region

Generic
Region

Parallel
Region 1

Parallel
Region 2

Call Region
1

Call Region
2

Generic
Region

Routine 1

Legend
.
Unchanged Copied
Model Model
o . Object Object
Specification )
Region Sylﬁﬁzsglzed M()\('()sld. })[tod(\l
Object e
Generic
Region is composed of
Early Exit Specification
Region Region
Generic Kernel Parallel
Region Routine 1 Region 1
Call Region Specification
| to Kernel 1 Region
Call Region Kernel Parallel
to Kernel 2 Routine2 Region 2
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Physical Processes

- QOriginal physical process library from JMA adapted for GPU
(MSMO0705 model) provides column-wise models for:

- Radiation, (solar, optical cloud absorption, atmospheric reflection
and absorption)

- For efficient use of GPU, memory footprint of indirect radiation
effects was reduced by 10x by using ad-hoc computations for each
long-wave band rather than storing temporary data of all bands.

- Planetary boundary layer model
- Wind momentum-, sensible heat- and latent heat surface fluxes
- Kessler-type warm rain model

-+ Hybrid Fortran’s adaptive parallelization granularity used to
generate GPU version

3. Application 29
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Column-wise Courant-Friedrichs-Lewy Convergence

- Precipitation module uses separate CFL condition per column.

- Due to granularity shift, column-wise CFL convergence requires
change from simple loop break to reduction kernel and masking
array (cfl_reached).

@domainDependant{
attribute (autoDom, present), domName(i,j), domSize (nx,ny)
+
cfl_reached, dt_rk_rest, ...
@end domainDependant

! ... dnttialization of wvartiables

timestep_sed: do
!' ... Runge-Kutta based iterative solution to sedimentation

@parallelRegion{appliesTo (GPU), domName(i, j), domSize(nx, ny)}
if ( dt_rk_rest < dt_rk_rest_epsln ) then
cfl_reached = .true.
end if
@end parallelRegion

call all_true_for_xy_plane(cfl_reached, all_cfl_reached)

if (all_cfl_reached) then
exit timestep_sed
end if
end do timestep_sed

3. Application



Verification

- Hybrid ASUCA uses 64bit FP arithmetic
throughout.

- Normalized root mean square error was
tested continuously for pressure,
moment and temperature variables.
Stays within 1E-9.

- Performed tests include:

- Radiation test.

- Physical process test for radiation,
planetary boundary layer and surface.

~N

¥
\

QUNA—L = = - : . :
120E  123E  126E 129E 132E 135E 138E 141E 144FE 147E

. Two-dimensional “warm bubble” test.

Figure 3.5: Total cloud cover result for ASUCA

. Various application configurations with  using 2km resolution grid and real initial data
real data, including full scale test on
1581x1301x58 grid (2km resolution).

3. Application

32



Productivity Results

Code Reuse and
Changes

Comparison with OpenACC Estimate

30000
added code 25000 F
‘ 5 N ; -
whitespace, <4 " 20000 F ST
comments, o T O Y S
line con \ = R -
§e 15000}
0 59k> Z‘, F
ﬂ - s e
' n 10000 [ | fsmee | e
@ o < N
= = o
o - 5000 [
z_; 9(1) 87k> B _______ /I /
k . PR L
Y > ‘~.O~\ ..............................
é’ == ) Hybrid ASUCA OpenACC Estimate
64k . [ CPU-only physics 0 7122
] storage order macros 116 6098
whitespace, ) .
comments, B parallelization & data layout DSL 4398 2521
fine cont. K& long-wave radiation 2059 2059
removed code Emodified data spec./init 3519 3519
@ routine & call signatures 1381 1381
[J other 3046 2884
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4. Performance

Method
Comparison

. Conclusion
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Performance Model: Reduced Weather Application

oT T temperature _ _
I GVAT 4§ . thermal diffusivity diffuse: 7-|:_)0|nt Von-Neumann-
0t radiation heat type StenC”, 01 25 FLOP/B DP

. radiate: 0.0625 FLOP/B DP

£ 280 &
: o
< . E l.l @ = memory bandwidth bounded
50 100 150 200 % :0 ) On a” arChiteCtureS (e-g-
D D D ain
e system balance on P100: 7.8
igure 4.1: Output at j = 100.
FLOP/B, 6-core Westmere:
diffuse ( .
for j € [Lny]: routine @ call | 2 . 8 FLO P/B)
for i e [1,nx]: for x € [a, b]: loop repeating
simulate > for k € [2,nz-1]: - statements .. statements..
for t € [0,tend]: .. pointwise process .. for each x € [a, b]
: .. boundary conditions .. o
physics _ for k € [1,nz|:
for j € [1,ny]: .. pointwise process
for i € [1,nx]:
—> . surface
® [
. » Planetary boundary
pointwise host/device 1/10
M
Atoutput b Mg b-mMHtoD Myq
tp = Ny * Ny = Ny + My - Ny
P Att?}mestep ( : Y : ( BWD BWHtoD > Y : RAD>

#timesteps between output pointwise inner diffusion pointwise diffusion boundary
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Results: Reduced Weather Application

IJK Order | KIJ Order
CPU Single Core 1.73s 1.28s Influence of storage order
GPU (OpenACCQC) 0.10s 0.77s on execution time
(Fastest Implementation)
85.0
80.0
75.0 @
= RS
30.0 i
25.0 %
é 20.0 z §
Performance of reduced weather 5 160 é §
app. for separately implemented, 0.9 é §
vs. Hybrid Fortran generated, vs. >0 N % \
_ — 00 N BN 77 NN
model on 256x256x256 grld, 100 1 Core CPU 6 Core CPU GPU
timesteps (fastest mno cache Model 1.1 2.3 23.0
implementation) mopenr 1.9 3.6
E OpenACC 27.8
O Hybrid Fortran 3.6 28.8
i Perfect Cache Model 2.7 5.4 81.1

4. Performance
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Results: Hybrid ASUCA

Kernel performance on

reduced Grid —
(301 x 301 x 58)

800.0

@ 700.0 7,

o 600.0 4.9

& 500.0 -IX

= MBS ————

g 400 . O :::::::::::

A 300.0 / ] 3X

2 200.0 /:::::

% 100.0 ]

- 0.0 é—:—:—:—:—:—
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4 ASUCA Reference, 4 x 6-core Xeon X5670 734.0
(3 ASUCA Reference, 1 x 18-core Xeon E5-2695 v4 456.7
B Hybrid ASUCA, 4 x Tesla K20x 148.9
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Results: Hybrid ASUCA

Compute

Halo Communication
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Contributions

5. Method Comparison

V' new granularity abstraction and memory layout
transformation method

v applied to ASUCA, resulting in >3x speedup in kernel - Qutline of Methods

performance and >2x reduction in processors

required for a full scale run with real data « Prod uctivity
0 method unique in increasing productivity for . .
porting coarse-grained codes to GPU CharaCtenzathn

Method :
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Methods for Hybrid CPU/GPU HPC Codes

Domain-Specific Languages
Parallelization, data access patterns and potentially other
program aspects are abstracted, requiring a full rewrite:

- Shimokawabe et al., STELLA, GridTools
- C++ user language
- Memory access patterns abstracted (stencil DSL)
- Include communicator
- Atlas
- C++ and Fortran user languages
. Hi%her level abstraction, code applies to variable
grids

Granularity Optimization

The following approaches to code granularity
optimization are known:

- Kernel fusion is employed in the following approaches:

- STELLA/ GridTools
- CLAW compiler

- Proposed Hybrid Fortran is a unique new method to
abstract granularity

Directive-Based Methods

Parallelization and data movement are abstracted,
access patterns are fixed:

- OpenACC used directly in various degrees by
Lapillonne et al.
- Govett et al.

Norman et al.

Memory Layout Transformation
Allows variable memory layouts without a full code rewrite:

- Kokkos

- C++ user language
- ICON

- Fortran user language
- Hybrid Fortran

5. Method Comparison
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Method Characterization

method memory layout | grid

Shimokawabe et al. abstracted fixed

i’flELLA & GridTools agszraczeg ﬁxe.db1 Data structure

as abstracte variable . .

OpenACC & OpenMP | fixed fixed Characterization

CLAW plus OpenACC | fixed fixed

Kokkos transforming fixed

ICON transforming fixed

Hybrid Fortran transforming fixed
method parallelization | granularity communication | language
Shimokawabe et al. | abstracted fixed abstracted C++
STELLA abstracted transforming abstracted C++
& GridTools (kernel fusion)
Atlas abstracted fixed abstracted C++

and Fortran
Control structure OpenACC transforming fixed fixed C++

characterization & OpenMP and Fortran
CLAW transforming transforming fixed Fortran
plus OpenACC (kernel fusion)
Kokkos abstracted fixed fixed C++
ICON transforming fixed fixed Fortran
plus OpenMP
Hybrid Fortran abstracted abstracted fixed Fortran

5. Method Comparison
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Method Evaluation

investment scoring matrix weights requirement vector

~
Po(ra) =1 — Ajj(a) - (wq - diag(/;:\))T

P(T) — mean(Pdata(rdata)a Pcontrol(rcontrol))

method Xmas tree | phys. | dyn. (Fortran) | dyn. (C++4)
Shimokawabe et al. 0.35 0.46 0.54 0.79
STELLA & GridTools 0.47 0.55 0.54 0.79
Atlas 0.67 0.69 0.79 0.79
OpenACC & OpenMP 0.31 0.36 0.41 0.41
CLAW plus OpenACC 0.31 0.45 0.41 0.15
Kokkos 0.39 0.63 0.64 0.90
ICON 0.39 0.86 0.91 0.65
Hybrid Fortran 0.52 0.98 0.90 0.64

Table 5.5: Productivity score P(r) for different usecases r.

5. Method Comparison
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Interactive Evaluation Matrix

Data Structure Expressiveness -

Memory Layout

fixed

abstracted

transforming

Language & Control Structure
Expressiveness

Grid

fixed

fixed

variable

fixed

ivariable

User Code Productivity landscape mapped to porting methods
Language |Granularit Parallelization Productivity values calculated as the product of Language & control structure
. . . . guag Y ~ductivity score and data structure productivity score
Matrix is publicly accessible.
fixed 0.06
___________________________________________ 2 0.06
ERRRURTRO | COccracted 0,04 015 .02 026
fine to ] g f
coarse J 50.13E§rquoolsio.47 0.23 0.73
CH+ abstracted egion
1 coarse to 0.03
Your legacy application contains... % 0.04
1|... C/C++ code. Yes v 0.03
2| ... Fortran code. No M 0.04
... a fine-grained kernel code structure that would benefit from coarser granularity No - 0.04
on some architectures. T 0.01
... a coarse-grained kernel code structure (presumably requiring refinement for [ 0.02
4 No g 0.02 F2CACC
GPU). R
__________ 0.04
5[ 2 rewrite of inter-processor communication (presumably for a new network Yes - 0.03
architecture)
... a memory layout that requires a different ordering on GPU (to achieve a Yes . 0.03
satisfying performance, i.e. coalesced memory access). /| 0.04 0.81
7| ... a grid that requires a geometry change, or multiple Grids. No v e 014 0.48 0.24 0.76
Lodise w LIdIIbIUIIIIIIIg
fine 0.04
............................................ EE-ERT 0.04
0.01 CUDA
0.02
0.02 OPenAce 0.09 0.31 0.15 10.48
fixed "~ OpenMP : : : i
abstracted .. 0.04 0.95
fine to 0.04 0.87
C++ & RECSTISCR.
Fortran coarse to 0.04 0.90
fine
{two-way  [|abstracted 0.04 0.95
e 52 0.04 0.90
RO
coarse to 0.04 0.93
ALLDCR—
transforming two-way transforming 0.05 1.00
Prod. Score ~> 5% 18% 64% 32% 100%

Prod. Score ¢

14%

33%

34%
81%

73%

76%
81%

76%

79%

86%
14%
33%
34%
81%

73%

76%
81%

76%

79%

86%
28%
47%

48%

95%

87%

90%
95%
90%

93%
100%
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Example Application: NICAM Physics

« Cloud microphysics

* Precipitation of rain, snow, graupel

* 111 loops to parallelize
* Due to timing issues and influenza: Roughly one week to work on this

benchmark

- Hours logged: ~31.3.

number of lines of code:

I New: 843

Reference: 10,322

Deleted: 1,000

Hybrid: 10,165

Runtime [s]
Reference,
2Xx 14-core 0.595
Broadwell [1]
Hybrid,
2Xx 14-core 0.941
Broadwell [2]
Hybrid, 0.232

1x P100 GPU [3]
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Summary .

6. Conclusion

Background

v paradigm shift towards throughput oriented design
v GPUs attractive for NWP (high mem. bandwidth)
v productivity and maintainability of GPU approaches lacking

_ _J

Motivation

v Many of today’s NWP- and climate models cannot make
efficient use of high-throughput architectures. We want

to find and prove easily adoptable approach.

Goal

v GPU port for “ASUCA” NWP model in Fortran with minimal
code divergence / minimal learning

Contributions

r M)

v new granularity abstraction and memory layout
transformation method

v applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required for
a full scale run with real data

v, method unique in increasing productivity for porting
coarse-grained codes to GPU
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On all previous projects applying high-throughput architectures to NWP
and climate models [27].

“All these approaches were effectively addressing fine-
grained parallelism in some way or other without
addressing coarser grained concurrency, and all involved
various levels of "intrusion" into code, from adding/
changing codes, to complete rewrites or translations.”

Prof. Bryan Lawrence

Professor of Weather and Climate Computing
Director of Models and Data @ NCAS

[27] Lawrence, Bryan N., et al. "Crossing the Chasm: How to develop weather and climate models for next
generation computers?”, under review for Geosci. Model Dev. (2017).

6. Conclusion



On how ACME model (DOE) cannot share a single source code for
CPU and GPU due to register pressure[16]:
“The only remedy for this at present is to break the kernel

up into multiple kernels. (...) On the CPU one would want
to keep an element loop fused together for caching

reasons.”

Dr. Matthew R. Norman
Computational Climate Scientist
Oak Ridge National Laboratory

[16] Norman, Matthew R., Azamat Mametjanov, and Mark Taylor. "Exascale Programming Approaches for the
Accelerated Model for Climate and Energy." (2017).

6. Conclusion
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Concluding Remarks

- All previous projects porting NWP and climate models to high-
throughput architectures had to choose between

-+ complete rewrite (maximum learning),
. code divergence (poor maintainability),
- efficiency loss on at least one architecture (poor performance).

+ This work shows a new approach, which has many potential
applications beyond GPU and beyond NWP.

+ Hybrid Fortran is Open Source and can be applied directly where
suitable.

- Method as documented can be replicated in other applications,
even if Hybrid Fortran is not used.

6. Conclusion
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Outlook
+ NVIDIA introduced DGX-2 - a 400k USD GPU system
.+ Thesis: Operational 2km ASUCA on a single DGX-2 possible
- 16x Tesla V100s totaling 512GB HBM with unified address space
+ Halo communication entirely through 900 GB/s NVSwitch

16x Tesla V100 32GB
12x NVSwitch

—— NVLink Plane Card

. 8XEDRIB/100 GigE

2x Xeon Platinum

1.5TB System Memory

30TB NVME SSDs - PCle Switch Complex
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Thank you for your attention.
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NWP Models

Approximations:
- Spherical-geopotential (G): Gravity without horizontal component

- Shallow-atmosphere (S)
= Gravitation constant with distance from surface
= Finer vertical vs. horizontal resolution (aspect ratio)
= Mixed implicit/explicit iteration schemes used to avoid inefficiently short time steps

- Hydrostatic (H): Atmosphere horizontally compressible, vertically incompressible
= Sound waves filtered

[ Original Equations by Non-hydrostatic deep Quasi-hydrostatic
Bjerknes V. G equations H equations

IS IS

{Nonhydrostatic shallow Hydrostatic primitive }
equations H equations

Figure 1.1: Interrelations of atmospheric models with respect
to their approximations according to White et al.
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48N 4

ASUCA NWP Model

42N 4

39N 4

What is ASUCA? 36N

- "Asuca is a System based on a Unified Concept for Atmosphere" =1

- fully compressible, non-hydrostatic weather prediction model 27N

24N

regional scale - as depicted in Figure 1.2

21N+

. one of main operational forecast mOdGIS in Ja an, in production Since 2011 .11'5E 120E  125E  130E 13'55, 140E  145E  150E  155E
P P P Figure 1.2: ASUCA’s model

- spatial discretization: finite-volume method on Arakawa-C-type simulation boundaries
rectangular grid

k-coordinates are terrain-following

- general horizontal coordinates, with lat/lon and Lambert conformal conic
projections available

- time discretization:

- third-order Runge-Kutta based iteration scheme for advection and
Coriolis force

- time-splitting method, employing secondary third-order Runge-Kutta
iteration with short time step for sound- and gravity waves

- vertical advection of water substances solved using separate time step for
each column using separate Courant-Friedrichs-Lewy convergence
condition

- vertical-only models for parametrization of radiation, planetary boundary
layer and surface physical processes
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NWP and Computational Performance

- As approximations show, available comp. performance has strong impact on
design of NWP models.

In Earth system models differentiate between dynamical- and physical
processes.

- dynamics: phenomena large enough to model in-grid.

-+ physics: phenomena too small for spatial grid resolution. Separate models

are computed, generating tendency values for dynamical time iteration
(parametrization).

- Increase in comp. performance allows increasing grid resolution.
= Physical processes slowly migrate towards dynamical modelling.

- During last decades this mainly applies to resolution of increasingly small
cloud formations in dynamical core.

- Typically applied finite-volume and finite-difference based discretization
methods are bottlenecked by memory bandwidth in the dynamics.

= Progress in comp. performance and thus grid resolution leads to increasing
memory bandwidth pressure.

1. Introduction
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GPUs for Numerical Weather Prediction

- GPUs offer high memory bandwidth, which is in high demand in NWP.
= GPUs are an attractive target architecture.
- Major problems to solve for existing regular grid NWP codes:
- Memory layout needs change
- Code granularity in physical processes too coarse for GPU
- Extending device data region to entire time integration
- Requires GPU port of all processes run in simulation

- Ensures minimal communication across slow bus between host and
device

- Existing methods to solve these problems:
- Only apply GPU to dynamical core or smaller parts of physics.
- Rewrite Fortran code using C++ templates for architecture specialization.
+ Code divergence between CPU and GPU to solve granularity issues.

- Unsatisfactory to maintain a unified, coherent and efficient code base in
Fortran (the standard in NWP)

- For ASUCA, a solution with none of these drawbacks was sought.

1. Introduction



GPU Computing - Programming Model

- CPU vector programming: single instruction, multiple data (SIMD)

- Vectorization highly sensitive to data dependent branching and loop ordering
- example shown below difficult or impossible to vectorize

- GPUs: single instruction, multiple threads (SIMT)

- Branching, early returns and backwards jumps (inner loops) supported for
each thread in hardware architecture

- Vectorization thus insensitive to loop ordering and branching

- GPUs do not support real context switching within kernels - all function calls
are inlined, thus share register scope.

= Due to register pressure as well as practicality, fine-grained kernels are
required on GPU.

do j = 1, ny
do 1 = 1, nx
if (b(i,j)) then
do k = nz -1, 1, -1
a(k,i,j) = a(k+1,i,j) * exp(- sqrt(gamma(k,i,j)) * tau)
end do
else
do k =1, nz - 1
a(k,i,j) = 0.04d0
end do
end if
end do
end do

1. Introduction
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GPU Computing - Peak Performance

- Recent CPUs have caught up in theoretical throughput -

theoretical GFLOP/s per Watt of some CPUs now two thirds
of current GPUSs.

- However: Memory bandwidth shows a clear advantage
for GPU - e.g. an 8.2x advantage in peak bandwidth per

Dollar for latest HPC targeted models.
(advantage even stronger for GPU if we include memory pricing in calculation)

(including 16 GB HBM2 Memory)

Characteristic CPU GPU
Vector length 16 32
(double precision)
Core- or SM count 28 60 Metric CPU GPU
Clock frequency 2.5 GHz 1.3 GHz Peak GFLOP/s 2240 5004
Memory bandwidth 119 GB/s 720 GB/s (double precision)
Thermal design power 2056W 300W GFLOP /s per Watt 10.9 16.7
Die size ~ 700 mm~ 610 mm* GFLOP/s per Dollar 0.22 0.68
List price $10,009 $7374 Memory bandwidth per Dollar | 11.89 MB/s | 97.64 MB/s

FLOP /Byte system balance

18

6

Tables 1.1 and 1.2: Intel Xeon 8180 (Skylake-SP) vs. NVIDIA Tesla P100 (Pascal)

1. Introduction

Ncores . lvector ) fclock

Ppeak —

CPlin
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GPU Computing - Device Memory

- GPU comes with separate memory system to enable high bandwidth.

- For applications to achieve a high performance, programmer
generally needs to keep track about memory a variable resides -
e.g. OpenACC data directives or CUDAMemCopy instructions.

- GPUs are particular about what order memory should be accessed in
order to allow coalescence. Innermost parallel thread index (i in
below example) should be mapped to unit stride.

+ This stands in contrast to CPUs where innermost loop index (k in
below example) may be optimal for unit stride.

- Performant storage order may differ between CPU and GPU.

do j =1, ny
o

do i = 1, nx
Host Device if (b(i,j)) then
Memor do k = nz - 1, 1, -1
MemOF emory a(k,i,j) = a(k+1,i,j) * exp(- sqrt(gamma(k,i,j)) * tau)

end do

do k =1, nz - 1

a(k,i,j) = 0.04d0
end do
CPU 11 GB/s GPU end if
end do

end do
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Column-wise Courant-Friedrichs-Lewy Convergence

sediment run

halo exchange

z-tendency calculate z-

precipitation

moment x tendency

- J

Y
calculate z-

z-tendency

tendency
.

moment y

z-tendency calculate z-

moment z tendency

tend:
ehdency calculate z-

density / pot.

tendenc
temperature y

sediment time integration

flux
precipation
 ——

diagnose sed.
\ ———-

B routine with
Legend ARIRAY hybrid kernel

3. Application

61



Physical Processes

- Original physical process library from JMA adapted for GPU (MSM0705 model):
Radiation based on 18-band model by Briegleb [17].

Optical cloud absorption based on statistical model by Goody [18] with thin cloud correction by Kiehl and
Zehnder [19].

- Transmission function for particle absorption uses look-up table method from empirical data gathered by NASA
Goddard [20].

- For efficient use of GPU, memory footprint of indirect radiation effects was reduced by 10x by using ad-hoc
computations for each long-wave band rather than storing temporary data of all bands.

A Mellor-Yamada based planetary boundary layer model, improved by Nakanishi and Hiino, is adopted [21].

Wind momentum-, sensible heat- and latent heat surface fluxes are simulated based on Beljaars and Holtstag
model [22].

- Kessler-type warm rain model is implemented for GPU.

- Hybrid Fortran’s adaptive parallelization granularity used to generate GPU version.

[17] Briegleb, Bruce P. "Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model." Journal of Geophysical
Research: Atmospheres 97.D7 (1992): 7603-7612.

[18] Goody, R. M. "A statistical model for water-vapour absorption." Quarterly Journal of the Royal Meteorological Society 78.336 (1952): 165-1609.
[19] Kiehl, J. T., and Charles S. Zender. "A prognostic ice water scheme for anvil clouds." WMO Publications TD (1995): 167-188.

[20] Kaufman, Y. J., et al. "Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing." Geophysical Research
Letters 28.8 (2001): 1479-1482.

[21] Nakanishi, Mikio, and Hiroshi Niino. "An improved Mellor—-Yamada level-3 model with condensation physics: lts design and verification."
Boundary-layer meteorology 112.1 (2004): 1-31.

[22] Beljaars, A. C. M., and A. A. M. Holtslag. "Flux parameterization over land surfaces for atmospheric models." Journal of Applied Meteorology
30.3 (1991): 327-341.
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Hybrid ASUCA: Implementation Status

implementation finished, error <1E-10

outside of scope




Numerical Weather Prediction (NWP)

- Bjerknes first formalized weather
prediction problem in 1904 [1].

- Lewis Fry Richardson first attempted Hans Lewy
numerical weather prediction during WW?  image: George M. Bergman, GFoL
using human computers - unsuccessfully -

Vilhelm Bjerknes

mage: Bierknes famiy, co.Bv-sa  dUE€ 10 numerical instability [2][3].
I - Courant, Friedrichs and Lewy provided

S

breakthroughs in numerical stability
analysis in 1928 [4].

- Charney formulated the first practical =
NWP model. Together with Fjortoft and Jule Charney

_ ) Image: © Nora Rosenbaum, 1976
') f\\ Von Neumann this model was adapted for
Lewis Fry Richardson ~ automatic computers after WW2 [5].

Image: Public Domain

[1] Bjerknes, Vilhelm. "Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik." Meteor. Z.
21 (1904): 1-7.

[2] Woolard, Edgar W. "LF Richardson on weather prediction by numerical process." Monthly Weather Review 50.2 (1922): 72-74.
[3] Lynch, Peter. “Richardson’s forecast: What went wrong?” NOAA NWP 50 (2004).

[4] Courant, Richard, Kurt Friedrichs, and Hans Lewy. "Uber die partiellen Differenzengleichungen der mathematischen Physik."
Mathematische annalen 100.1 (1928): 32-74.

E?]ggg)argggggllles G., Ragnar Fjortoft, and J. von Neumann. "Numerical integration of the barotropic vorticity equation." Tellus 2.4 John von Neumann

Image: Public Domain

1. Introduction 64



NWP Models

Equations:
1. Hydrodynamic equations of motion in 3D

= 3 equations, differential relations among velocity components, density, air
pressure

2. Mass continuity of air and water

3. State equation for ideal gases

4. Conservation of energy

= 7 equations, 7 unknowns, thus solvable

Dynamically modelled phenomena in free atmosphere:
Advection
Diffusion
Gravity waves
Coriolis force / Rossby waves
Sound waves

- No meteorological relevance but relevant for stable solutions of large scale,
high-Mach-number atmospheric flows.

- Time-splitting schemes used to allow sound wave resolution in fully compressible
models.
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NWP Models

Approximations:

- Spherical-geopotential (G): Gravity without horizontal component

- Shallow-atmosphere (S): Gravitation constant with distance from surface

- Hydrostatic (H): Atmosphere horizontally compressible, vertically incompressible
= Sound waves filtered

4 I 4 I 4 I
Origir];a.d ]iquat\i;)ns by Non—hydrosfatic deep Quasi—hyd.rostatic
jerknes V. G equations H equations
\_ J \_ l J \_ l J
4 N 4 N
Non-hydrostatic shallow Hydrostatic primitive
ti ti
equations H equations
\ % \ %

Figure 1.1: Interrelations of atmospheric models with respect to their
approximations according to White et al.
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ASUCA NWP Model

What is ASUCA?

- Asuca is a System based on a Unified Concept for
Atmosphere"

regional scale - as depicted in Figure 1.2

- one of main operational forecast models in Japan, in
production since 2014

- spatial discretization: finite-volume method on Arakawa-C-
type rectangular grid

- time discretization:

- third-order Runge-Kutta based iteration scheme for
advection and Coriolis force

. time-splitting method, employing secondary third-order
Runge-Kutta iteration with short time step for sound- and
gravity waves

- vertical-only models for parametrization of radiation,
planetary boundary layer and surface physical processes

48N 4

45N 4

anN{ T

39N{

36N -
33N 1
30N
27N+

24N

- fully compressible, non-hydrostatic weather prediction mods,,.

110E  115E  120E 1256 130E 135 140E  145F

Figure 1.2: ASUCA’s model
simulation boundaries

150E  155E
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