
Fortran 2015 and Coarrays in GNU Fortran

Salvatore Filippone

Cranfield University
salvatore.filippone@cranfield.ac.uk

Fortran Specialist Group Annual General Meeting 2017



Outline

Introduction: GNU Fortran and the OpenCoarrays project;

Implementation status;

Transport layers: performance results;

Example applications: Load Balancing on Phi, Linear solvers,
Climate Modeling;

C749 considered harmful.



Credits

Damian Rouson, Sourcery Institute, Berkeley (CA)

Zaak Beekman, Princeton Univ. (NJ)

Alessandro Fanfarillo, Dan Nagle, NCAR, Boulder (CO)

Ambra Abdullahi, Valeria Cardellini, Univ. Rome “Tor
Vergata” (IT)

Salvatore Filippone, Soren Rasmussen, Cranfield University
(UK)



Coarray basics
There are a bunch of copies of the program called images, and
they perform their own computations until reaching an explicit or
implicit synchronization point

The sync points are:

sync all

sync images

allocate

TS18508 introduces EVENT facility for more sophisticated sync
strategies, as well as ATOMICs and collective communications.



Coarray variables
Each image has its data, but some data can be accessed remotely.
Variable access is extended with the square brackets []

The index in the square bracket refers to an image index, running
from 1 to n; it is a visual clue as to where communication happens.
Rules:

The square brackets can be on either left or right hand side of
an assignment;

If dropped, the local image is intended;

However, it is legal to address explicitly the local image



OpenCoarrays

http://www.opencoarrays.org/

OpenCoarrays

Provides an interface through which the compiler interacts with
any one of several communication layers (e.g. MPI, OpenSHMEM)

Composed by three parts:

Compiler wrapper: “caf” provide appropriate arguments to
swap layers transparently;

Run-time library: supports compiler communication and
synchronization requests by invoking a lower level
communication library (MPI by default).

Executable file launcher: unified program launcher “cafrun”
(again minimizing impact of layer swap).

http://www.opencoarrays.org/


GNU Fortran and OpenCoarrays

http://www.opencoarrays.org/

http://www.opencoarrays.org/


GNU Fortran and OpenCoarrays

Timeline

Initial support for Coarrays in GNU Fortran 4.6 (2011): partial
single image;

Full single image and initial parallel support in GCC 4.7
(2012);

Development stagnated until 2014 when OpenCoarrays
project started;

From version 5.1.0 includes OpenCoarrays support for
transport layer;

Many features of TS18508 (including collectives, atomics and
EVENTs) covered in 6.1 (first compiler to do so! 2016);

Support for FAILED IMAGES (initial in 7.1);

Support for TEAMs: patch submitted for review on Sep.12th.



Transport layers

Translation from Fortran runtime API into an actual
communication library:

MPI (one-sided features of MPI ≥ 2, fault tolerance features
under consideration for MPI 4);

SHMEM

GASNET

Typical coarray statement(s):

z(:)[dst] = w(:) ! PUT

y(lb:ub:str) = x(lb:ub:str)[src] ! GET

The PUT version allows for overlap

y(:)[dst] = x(:) ! PUT

call foo_bar() ! This MAY overlap with communication

sync images(dst)



Transport layers

What do you need to use Coarrays effectively?

CoArray programmers (need to) embrace 1-sided communications;
hence need for “Communication progress”

Common wisdom holds that MPI_ISend and MPI_IRecv achieve
overlap between communications and computation.

Unfortunately, the MPI standard allows for
implementations to actually move the data only upon
subsequent test/probe/wait calls

And the implementation of “Communication progress” is entirely
non-trivial
Cardellini V, Fanfarillo A, Filippone S, 2016 http://hdl.handle.net/2108/140530

http://hdl.handle.net/2108/140530


Performance data, take 1: strided copy

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1 2 4 8 16 32 64

M
B

/s
e

c

Block size (doubles)

Bandwidth on multiple nodes

GFor/MPI_Y Intel_Y GFor/MPI_H Cray_H

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1 2 4 8 16 32 64 128

M
B

/s
e

c

Block size (doubles)

Bandwidth strided transfers

GFor/MPI Cray-8.2.2 GFor/GN Cray-8.3.2

Fanfarillo, A., Filippone, S., Burnus, T., Nagle, D., Cardellini, V. and Rouson, D, PGAS 2014, Eugene, OR.



Climate modeling: MPI vs SHMEM

Rouson, D., Gutmann, E., Fanfarillo, A., and Friesen, B., PAW17, Denver, CO, Nov. 2017



Climate modeling: MPI vs SHMEM

Rouson, D., Gutmann, E., Fanfarillo, A., and Friesen, B., PAW17, Denver, CO, Nov. 2017



Load balancing: Better MPI than MPI?

Monte Carlo method for pricing Asian options (embarrassingly
parallel algorithm).

Original code taken from Parallel programming and
optimization with Intel Xeon Phi coprocessors*.

Xeon Phis and CPUs used in symmetric mode (each device
considered as a compute node).

Approach presented by Colfax based on Master-Slave
paradigm using MPI two-sided functions.

Proof of concept for dynamic load balancing on a single
heterogeneous node.

Use the ATOMIC FETCH ADD intrinsic through the compiler
wrapper

* Colfax International (http://www.colfax-intl.com/)



Load balancing: Better MPI than MPI?

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
h

ro
u

g
h

p
u

t 
(r

a
n

d
o

m
 v

a
lu

e
s
/s

e
c
)

Intel MPI Fabrics

MPI
CAF

CAF_t

Fortran code faster than MPI, despite using the same underlying
Fortran compiler and MPI implementation!
Cardellini, V., Fanfarillo, A. and Filippone, S., Parallel Computing, 2017, to appear



Load balancing: Better MPI than MPI?

0.0e+00

2.0e+09

4.0e+09

6.0e+09

8.0e+09

1.0e+10

shm:TMI TMI shm:TCP TCP

T
h
ro

u
g
h
p
u
t 
(r

a
n
d
o
m

 v
a
lu

e
s
/s

e
c
)

Intel MPI Fabrics

MPI
CAF
MTH

Cumul.

Cardellini, V., Fanfarillo, A. and Filippone, S., Parallel Computing 2017, to appear



Example applications

Krylov solvers: the essential step is the “halo exchange”, i.e. a
variable and sparse all-to-all communication.

y(rcv_idxs(1:nrcv(img))) = x(rmt_idxs(1:nrcv(img)))[img] ! GET version

y(rmt_idxs(1:nsnd(img)))[img] = x(snd_idxs(1:snd(img))) ! PUT version

This is quite difficult to translate into efficient code, so we tested
multiple alternatives, some with a more “MPI-like” cooperative
approach, also testing variants of EVENTS vs SYNC and PUT vs
GET.
Besides, we ran against C749 (see later).



Example applications

Krylov solvers: time to prepare a preconditioner and time to apply
the iteration to convergence

MPI CAF

np tprec tsolve tprec tsolve

1 37.5 35.8 37.4 35.6
2 19.9 27.1 19.8 26.9
4 10.3 15.5 10.5 15.3
8 5.56 8.46 5.37 9.87

16 3.71 5.64 2.35 5.87
32 2.19 3.68 2.44 3.72
64 1.45 4.0 2.12 3.72

3D PDE problem, centered differences, strong scalability
Abdullahi Hassan, A., Cardellini, V., Filippone, S., PARCO 2017, Bologna, IT



Example applications

Krylov solvers: events are not always faster overall

np idim MPI CAF CAF
(sync images) (events)

1 250 0.64 0.90 0.89
2 350 0.99 1.03 1.0
4 500 1.37 1.58 1.33
8 700 2.00 2.20 3.88

16 1000 3.03 3.82 4.41
32 1400 5.07 5.36 6.10
64 2000 6.52 6.81 7.79

2D PDE problem, centered differences, weak scalability
Abdullahi Hassan, A., Cardellini, V., Filippone, S., PARCO 2017, Bologna, IT



Development directions

Full support for transport layers: SHMEM, GASNET, etc.

Full support for TEAMs and FAILED IMAGE

Full integration in the GNU distribution machinery

More in-depth analysis of performance issues



C824 considered harmful

C824
An entity whose type has a coarray ultimate component shall be a
nonpointer nonallocatable scalar and shall not be a coarray.

What does it mean? (A plea to our standards officer)

The (size of the) set of entities that either are coarrays or contain coarray
components must be fixed at compile time!!!!!!!!

type vector

real, allocatable :: component(:),component_buffer(:)[:]

end type

type(vector) :: field ! Ok

type(vector), allocatable ::: bundle(:) ! Forbidden

type buffer_list_item

real, allocatable :: buffer(:)[:]

type(buffer_list_item), pointer :: next ! Forbidden

end type

This means that in the midst of Fortran 2015 you are yanking the
handbrake and reverting to FORTRAN 77 style!



Thank You!


