Experiences from the Fortran Modernisation Workshop

Wadud Miah (Numerical Algorithms Group)
Filippo Spiga and Kyle Fernandes (Cambridge University)
Fatima Chami (Durham University)

http://www.nag.co.uk/content/fortran-modernization-workshop
Workshop Overview

• Computational scientists are the biggest Fortran users;
• This workshop focuses on teaching modern Fortran, tools and libraries that are commonly used within computational science;
• The workshop presents the concepts and theory followed by a practical hands on exercises;
• This workshop is only for computational scientists. It does not cover generic programming for other disciplines - there are better programming languages for the other domains;
• It provides a more holistic view of code development for computational science and the complexities of verification and validation.
Fortran Usage on Archer1 HPC Service (1)

• Programming language usage is:

<table>
<thead>
<tr>
<th>Programming Language</th>
<th>%Time</th>
<th>%Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran</td>
<td>73.58</td>
<td>80.03</td>
</tr>
<tr>
<td>C++</td>
<td>7.2</td>
<td>4.74</td>
</tr>
<tr>
<td>C</td>
<td>7.2</td>
<td>3.14</td>
</tr>
<tr>
<td>Python</td>
<td>0.7</td>
<td>0.99</td>
</tr>
<tr>
<td>Others</td>
<td>13.8</td>
<td>11.75</td>
</tr>
</tbody>
</table>

• Fortran usage statistics is $\approx 70\%$ for the Top 500 supercomputers \cite{2};

• *Fortran is the dominant programming language of computational science and engineering.*

1The UK National Supercomputing Service, ARCHER. \url{www.archer.ac.uk}
2 \url{www.top500.org}
Software Development Workflow

User feedback for the next iteration - the Agile way

Scientific model and algorithm

Software Design

Software Implementation

Fortran

Code Peer Review

Git

Automated Build

Automake

Code Accepted

Unit and Acceptance Testing

Software Release + documentation

User Support and Interaction

Release Cycle

Doxygen

CamFort

FPT

pFUnit

Fortran
Computational Science Workflow

1. Natural phenomena

2. Idealised model

\[L(u) = f \]

3. Discretised method

\[
\text{do } i = 1, Ni \\
! [...] \\
\text{end do}
\]

4. Computer program
- Fortran

5. Execution on HPC – experiment is set up

6. Data management - NetCDF/HDF5

7. Visualisation - PLplot

8. Academic paper

\[u^{n+1} = F(u^n) \]
Current Practice of Fortran Developers

Fortran usage (252 respondents)

- Usage
- Fortran standard
- 66
- 77
- 90
- 95
- 2003
- 2008
- OOP
Version Control

• The need for version control is obvious and allows software teams to better manage their code;

• Code features are developed in a separate branch and then merged with the master branch;

• Code releases are tagged so developers have a snapshot of a release;

• Distributed version control systems such as Git and Mercurial are becoming increasingly popular;

• A version control system as a valuable tool for Fortran programmers!
Automake

- Automake allows a consistent way to build any Fortran codes;
- A valuable tool for Fortran programmers particularly for medium to large projects;
- Fortran modules are placed in their individual files and Automake only builds modules that have changed and not all the modules;
- Another indispensable tool for Fortran programmers!
Fortran Code Verification

• The survey identified code verification as a weakness in Fortran developers;
• Unit testing frameworks are very rarely used so pFUnit [1] is taught at the workshop which can test serial, OpenMP and MPI codes;
• Dimensional analysis and stencil verification using CamFort [2] is also covered;
• FPT [3] for mixed precision bugs such as overflow and truncation;
• Forcheck [4] will be covered in the next revision of the workshop.

Fortran Code Documentation With Doxygen

• Special comments are placed in the Fortran code which Doxygen [1] parses and runs in an automated manner;
• Equations in LaTeX are also parsed to create a HTML page;
• Doxygen documentation is mainly used to document the code so the team understand what each Fortran module does;
• It is also used to create user documentation on using APIs, e.g. libraries;
• We plan to replace Doxygen with Fortran Documenter [2].

Scientific Data Management with NetCDF

• Data management is an important topic and it is addressed in the workshop by promoting the usage of NetCDF file format;
• Data management is aided by the use of global attributes or metadata that are describe the dataset;
• Metadata can include: what model is being solved, experimental parameters, numerical solvers used, compiler used to build code and anything relevant to the experiment;
• The metadata should allow others to recreate the dataset and is used by data management system such as Eudat [1];
• Fortran 90 API exists for NetCDF.

[1] www.eudat.eu
In-situ Visualisation With PLplot

- In-situ visualisation allows the scientist to visualise the solution as the simulation is running;
- This allows the scientist to test their models and parameters, and if the solution diverges or produces non-physical results, the simulation can be terminated;
- This saves the scientists a lot of time and saves a lot of CPU cycles particularly early on in the simulation;
- In addition, visualisation is done quicker as the data is not saved on disk which also results in saving disk space;
- PLplot has Fortran 90 bindings.
Current Practice of Fortran Developers

- **Unit testing frameworks (261 respondents)**
 - Yes: 9.06% (24)
 - No: 90.94% (235)

- **In-situ visualisation (261 respondents)**
 - Yes: 96.45% (250)
 - No: 3.55% (9)

- **Software engineering (227 respondents)**
 - Yes: 21.59% (49)
 - No: 78.41% (178)

- **Version control (261 respondents)**
 - Yes: 67.22% (175)
 - No: 32.78% (86)
What Attendees Will Use Afterwards

![Bar chart showing future usage of various technologies. The x-axis represents different technologies, and the y-axis represents usage ranging from 0 to 100.](image-url)
Fortran Tools and Practice

• Fortran code verification has been recognised as a weakness which is being addressed by the workshop;
• More needs to be done to promote modern Fortran standards to increase portability of codes;
• Computational scientists need to be supported for the entire computational science workflow and not just for the code development workflow;
• **Optimised and efficient code should be written in a portable manner using the Fortran language standard to produce performance portable code** which is the emphasis of the workshop;
• The next workshop will be held at STFC Daresbury on 27-28/OCT. Visit the workshop web page for more details [1] and please spread the word;
• I can be reached at **wadud.miah@nag.co.uk**

[1] http://www.nag.co.uk/content/fortran-modernization-workshop