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Abstract 

 
When IBM's John Backus first developed the 
Fortran programming language, back in 1957, he 
certainly never dreamt that it would become a 
world-wide success and still be going strong many 
years later. Given the oft-repeated predictions of its 
imminent demise, starting around 1968, it is a 
surprise, even to some of its most devoted users, that 
this much-maligned language is not only still with 
us, but is being further developed for the demanding 
applications of the future. What has made this 
programming language succeed where most slip into 
oblivion?  
 
One reason is certainly that the language has been 
regularly standardized. In this paper we will trace 
the evolution of the language from its first version 
and though six cycles of formal revision, and 
speculate on how this might continue. 
 
Now, modern Fortran is a procedural, imperative, 
compiled language with a syntax well suited to a 
direct representation of mathematical formulas. 
Individual procedures may be compiled separately 
or grouped into modules, either way allowing the 
convenient construction of very large programs and 
procedure libraries. Procedures communicate via 
global data areas or by argument association. The 
language now contains features for array processing, 
abstract data types, dynamic data structures, object-
oriented programming and parallel processing. 
 
Keywords: array processing, data abstraction, 
object-oriented programming, optimization, history 
of computing. 

Language evolution 

1. The First Age: Origins 
In the early days of computing, programming was 
tedious in the extreme – every tiny step had to be 
coded as a separate machine instruction, and the 
programmer had to be familiar with the intimate 
details of the computer's operation. Spurred by a 
perceived economic need to provide a form of 
‘automatic programming’ to allow efficient use of 
manpower and computers, Backus proposed, at the 
end of 1953, to begin the development of the 
Fortran programming language (the name being a 
contraction of FORmula TRANslation). The 
overriding objective of the development team was to 

produce a compiler that would produce efficient 
object code comparable to that of hand-written 
assembly code. 
 
Fortran came as a breakthrough. Instead of writing 
some obscure hieroglyphics, say as an instruction to 
divide two variables A and B and to save the result 
in C, the programmer could now write a more 
intelligible and natural statement, namely 
 
      C = A/B 
 
This is called expression abstraction, because 
mathematical expressions could be written more-or-
less as they appear in a textbook. Herein lay the 
secrets of Fortran’s initial rapid spread: scientists 
could write programs to solve problems themselves, 
in a familiar way and with only limited recourse to 
professional programmers, and that same program, 
once written, could be transported to any other 
computer which had a Fortran compiler. The first 
version, now known as FORTRAN I, contained 
early forms of constructs that have survived to the 
present day: simple and subscripted variables, the 
assignment statement, a do-loop, mixed-mode 
arithmetic, and input/output (I/O) specifications.  
 
Many novel compiling techniques had to be 
developed, and it was not until 1957 that the first 
compiler was released to users of the target 
machine, the IBM 704. First experience showed 
that, indeed, it increased programmer efficiency and 
allowed scientists and engineers to program easily 
for themselves. The source form and syntax 
liberated programmers from the rigid input formats 
of assembly languages. Fortran was an immediate 
success.  
 
Ease of learning and stress on optimization are two 
hallmarks of Fortran that have contributed to its 
continued popularity. 
 
Based on the experience with FORTRAN I, it was 
decided to introduce a new version, FORTRAN II, 
in 1958. The crucial differences between the two 
were the introduction of subprograms, with their 
associated concepts of shared data areas, and 
separate compilation. FORTRAN II became the 
basis for the development of compilers by other 
manufacturers. A more advanced version was 
developed for the IBM 704 – FORTRAN III – but it 
was never released. 
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2. The Second Age: FORTRAN 66 
In 1961, an IBM users’ organization requested from 
IBM a new version, now called FORTRAN IV, 
which contained type statements, the logical-if 
statement, the possibility to pass procedure names as 
arguments, and the data statement and block 
data subprogram. Some original features, such as 
device-dependent I/O statements, were dropped. 
 
FORTRAN IV was released in 1962 and quickly 
became available on other machines, but often in the 
form of a dialect. Indeed, the proliferation of these 
dialects led an American Standards Association 
(ASA) Working Group to develop a standard 
definition for the language. In 1966, a standard for 
FORTRAN was published, based on FORTRAN IV. 
This was the first programming language to achieve 
recognition as a national, and subsequently 
international (ISO, Geneva), standard, and is now 
known as FORTRAN 66.  
 
FORTRAN 66 was made available on almost every 
computer made at that time, and was often pressed 
into service for tasks for which it had never been 
designed. Thus began a period during which it was 
very popular with scientists, but newer, more 
modern languages were appearing, including 
Algol 60, whose ‘superior’ concepts led to 
predictions that it would rapidly replace ‘old-
fashioned` Fortran because of the latter’s 
limitations. It became increasingly criticized, 
especially by academic computer scientists. 

3. The Third Age: FORTRAN 77 
The permissiveness of the FORTRAN 66 standard, 
whereby any extensions could be implemented on a 
given processor so long as it still correctly processed 
a standard-conforming program, led again to a 
proliferation of dialects. These dialects typically 
provided much-needed additional features, such as 
bit handling, or gave access to hardware-specific 
features, such as byte-oriented data types. Since the 
rules of ASA’s successor, the American National 
Standards Institute (ANSI), required that a standard 
be reaffirmed, withdrawn or revised after a five-year 
period has elapsed, the reformed FORTRAN 
committee, X3J3, decided on a revision. This was 
published by ANSI, and shortly afterwards by ISO, 
in 1978, and became known as FORTRAN 77. The 
new standard brought with it many new features, for 
instance the if…then…else construct (from the 
push for ‘structured programming’), a character data 
type, and much enhanced I/O.  
 
The new language was rather slow to spread. This 
was due in part to certain conversion problems and 
also to the decision of one large manufacturer, IBM, 
not to introduce a new compiler until 1982. It was 
thus only in the mid-1980s that FORTRAN 77 

finally took over from FORTRAN 66 as the most 
used version. Ultimately, it became a hugely 
successful language for which compilers were 
available on every type of computer from the PC to 
the mighty Cray. Programs written in FORTRAN 77 
were routinely used to perform such diverse 
calculations as designing the shapes of airplane 
fuselages, predicting the structures of organic 
molecules, and simulating the flow of winds over 
mountains.  
 
Algol is now a dead language, however it begat 
descendents, most notably Pascal and Ada, and 
these too, in their time, together  with IBM's PL/1, 
were variously considered to be about to deliver the 
coup-de-grâce to FORTRAN. But the new standard 
lent it a new vigour that allowed it to maintain its 
position as the most widely used scientific 
applications language of the time. However, it began 
to yield its position as a teaching language. 
 
The entire issue of the journal [1] is devoted to 
papers on the early history of Fortran.   

4. The Fourth Age: The battle for Fortran 90 
As computers doubled in power every few years, 
and became able to perform calculations on many 
numbers simultaneously, by the use of processors 
running in parallel, and as the problems to be solved 
became ever more complex, the question arose as to 
whether FORTRAN 77 was still adequate. (And 
there were a large number of user requests left over 
that it had not been possible to include in it.) 
Programs of over a million lines became 
commonplace, and managing their complexity and 
having the means to write them reliably and 
understandably – so that they produce correct results 
and could later be modified – were desperately 
required. 
 
Thus began the battle over Fortran 90.1 Fortran had 
been attacked by computer scientists on two 
grounds. One was because of its positively 
dangerous aspects, for instance the lack of any 
inherent protection against overwriting the contents 
of memory in the computer, including the program 
instructions themselves! The other was its lack of 
indispensible language features, such as the ability 
to control the logical flow through a program in a 
clearly structured manner. On the other hand, 
Fortran had always been a relatively easy language 
to learn and that, combined with its emphasis on 
efficient, high-speed processing, had kept it 
attractive to many busy scientists. Thus, the 
standards committees were faced with the almost 
impossible task of modernising the language and 
making it safer to use, whilst at the same time 

                                                           
1 And a change to lower-case spelling. 

JCS&T Vol. 11 No. 1                                                                                                                                April 2011

2



keeping it ‘Fortran-like’ and efficient. Fortran 90 
was the answer. 
 
There were other justifications for continuing to 
revise the definition of the language.  As well as 
standardizing vendor extensions, there was a need to 
respond to the developments in language design that 
had been exploited in other languages, such as APL, 
Algol 68, Pascal, Ada, C and C++. Here, X3J3 
could draw on the obvious benefits of concepts like 
data hiding. In the same vein was the need to begin 
to provide an alternative to dangerous storage 
association, to abolish the rigidity of the outmoded 
source form, and to improve further on the 
regularity of the language, as well as to increase the 
safety of programming in the language and to 
tighten the conformance requirements. To preserve 
the vast investment in Fortran 77 codes, the whole 
of Fortran 77 was retained as a subset. However, 
unlike the previous standard, which resulted almost 
entirely from an effort to standardize existing 
practices, the Fortran 90 standard was much more a 
development of the language, introducing features 
that were new to Fortran, although based on 
experience in other languages. This tactic, in fact, 
proved to be highly controversial, both within the 
committee and with the wider community. Vested 
interests got in on the act, determined, depending on 
their persuasion, and in particular on whether they 
were users or vendors, either to extend Fortran to 
cope better with new computers and new problem 
domains or to stop the whole process in its tracks. 
The technical and political infighting reached 
legendary proportions. It was not until 1991, after 
much vigorous debate and thirteen years’ work, that 
Fortran 90 was finally published by ISO. 
 
It introduced a new notation that allows arrays of 
numbers, for instance matrices, to be handled in a 
natural and clear way, and added many new built-in 
facilities for manipulating such arrays, for example, 
to add together all the numbers in an array, a single 
command (sum) is all that is required. The use of 
the array-handling facilities made scientific 
programming simpler, less error prone and, on the 
most powerful computers whose hardware can 
handle vectors of numbers, potentially more 
efficient than ever. 
 
To make programs more reliable, the language 
introduced a wealth of features designed to catch 
programming errors during the early phase of 
compilation, when they can be quickly and cheaply 
corrected. These features included new ways of 
structuring programs and the ability to ensure that 
the components of a program, the subprograms, ‘fit 
together’ properly. For instance, Fortran 90 makes it 
simple to ensure that an argument mismatch can 
never arise as it enables programmers to construct 
verifiable interfaces between subprograms.  

In summary, the main features of Fortran 90 were, 
first and foremost, the array language and data 
abstraction. The former is built on whole array 
operations and assignments, array sections, intrinsic 
procedures for arrays, and dynamic storage. It was 
designed with optimization in mind. The latter is 
built on modules and module procedures, derived 
data types, operator overloading and generic 
interfaces, together with pointers. Also important 
were the new facilities for numerical computation, 
including a set of numeric inquiry functions, the 
parameterization of the intrinsic types, new control 
constructs – select case and new forms of do, 
internal and recursive procedures and optional and 
keyword arguments, improved I/O facilities, and 
many new intrinsic procedures.  Last but not least 
were the new free source form, an improved style of 
attribute-oriented specifications, the implicit 
none statement, and a mechanism for identifying 
redundant features for subsequent removal from the 
language. The requirement on compilers to be able 
to identify syntax extensions, and to report why a 
program had been rejected, was also significant. The 
resulting language was not only a far more powerful 
tool than its predecessor, but a safer and more 
reliable one too. Storage association, with its 
attendant dangers, was not abolished, but rendered 
unnecessary. Indeed, experience showed that 
compilers detected errors far more frequently than 
before, resulting in a faster development cycle. The 
array syntax and recursion also allowed quite 
compact code to be written, a further aid to safe 
programming. Fortran 90 also allowed programmers 
to tailor data types to their exact needs. Another 
advance was the language's new ability to structure 
program data into arbitrarily complex patterns – 
lists, graphs, trees, etc. – and to manipulate these 
structures conveniently. This is achieved through the 
use of pointers. A related feature was the ability to 
allocate storage for program data dynamically. 
 
After this revision, Fortran became, it must be 
admitted, a different language, as the entire issue of 
the journal [2], which is devoted to various aspects 
of the development of Fortran 90, shows. 

5. The Fifth Age: A minor revision, Fortran 95 
Following the publication of Fortran 90, two further 
significant developments concerning the language 
occurred. The first was the continued operation of 
the two standards committees, J3 (as X3J3 became 
known) and the international WG5, and the second 
was the founding of the High Performance Fortran 
Forum (HPFF). 
 
Early on in their deliberations, the committees 
decided on a strategy whereby a minor revision of 
Fortran 90 would be prepared by the mid-1990s and 
a further revision by about the year 2000. The first 
revision, Fortran 95, is the subject of this section. 
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 The HPFF was set up in an effort to define a set of 
extensions to Fortran, such that it would be possible 
to write portable, single-threaded code when using 
parallel computers for handling problems involving 
large sets of data that can be represented by regular 
grids. This version of Fortran was to be known as 
High Performance Fortran (HPF), and Fortran 90 
was chosen as the base language. Thus, HPF was a 
superset of Fortran 90, the main extensions being 
expressed in the form of directives. However, it did 
become necessary also to add some additional 
syntax, as not all of the desired features could be 
accommodated in the form of directives. 
 
It was evident that, in order to avoid the 
development of divergent dialects of Fortran, it 
would be desirable to include the new syntax 
defined by HPF in Fortran 95 and, indeed, these 
features were the most significant new ones that 
Fortran 95 introduced. The other changes consisted 
mainly of what are known as corrections, 
clarifications and interpretations. Only a small 
number of other pressing but minor language 
changes were made.  
  
A new ISO standard, replacing Fortran 90, was 
adopted in 1997.  
 
 
6. The Sixth Age: Fortran 2003   
Without a break, standardization continued, and the 
following language standard, Fortran 2003, was 
published, somewhat delayed, in 2004. The major 
enhancements were: 
 
• Derived type enhancements: parameterized 

derived types, improved control of accessibility, 
improved structure constructors, and finalizers. 

• Object-oriented programming support: type 
extension, inheritance, polymorphism, dynamic 
type allocation, and type-bound procedures. 

• Data manipulation enhancements: deferred type 
parameters, the volatile attribute, explicit 
type specification in array constructors and 
allocate statements, pointer enhancements, 
extended initialization expressions, and 
enhanced intrinsic procedures. 

• Input/output enhancements: asynchronous 
transfer, stream access, user-specified transfer 
operations for derived types, user-specified 
control of rounding during format conversions, 
named constants for pre-connected units, the 
flush statement, regularization of keywords, 
and access to error messages. 

• Procedure pointers. 
• Support for the exceptions of the IEEE 

Floating-Point Standard (IEEE 1989). 
• Interoperability with the C programming 

language. 

• Support for international usage: access to ISO 
10646 4-byte characters and the choice of 
decimal or comma in numeric formatted 
input/output. 

• Enhanced integration with the host operating 
system: access to command-line arguments, 
environment variables, and processor error 
messages. 

 
In addition, there were numerous minor changes but 
Fortran 2003 was essentially upwards compatible 
with the Fortran 95 standard that it replaced. The 
enhancements had, after all, been developed in 
response to demands from users and to keep Fortran 
relevant to the needs of programmers, without 
losing the vast investment in existing programs. 
 
Related standards 
No Fortran standard up to and including Fortran 
2003 included any significant feature intended 
directly to facilitate parallel programming. Rather, 
this has had to be achieved through the intermediary 
of ad hoc industry standards, in particular HPF, 
MPI, OpenMP and Posix Threads.  
 
HPF directives take the form of Fortran comment 
lines that are recognized as such only by an HPF 
processor. An example is 
 
      !HPF$ ALIGN WITH b :: a1, a2, a3 
 
to align three conformable (matching in shape) 
arrays with a fourth, thus ensuring locality of 
reference. Further directives allow, for instance, 
aligned arrays to be distributed over a set of 
processors. 
 
MPI is a library specification for message passing. 
OpenMP supports multi-platform, shared-memory 
parallel programming and consists of a set of 
compiler directives, library routines, and 
environment variables that determine run-time 
behaviour.  Posix Threads is again a library 
specification, for multithreading.  
  
MPI and OpenMP have both become widespread, 
but HPF has ultimately met with little success.  
 
7. The Seventh Age: Fortran 2008  
Notwithstanding the fact that Fortran 2003-
conformant compilers have been very slow to 
appear, the standardization committees proceeded 
with yet another standard, Fortran 2008. Its single 
most important new feature is coarray handling 
(described below). Further, the do concurrent 
form of loop control and the contiguous attribute 
are introduced. Other major new features include: 
sub-modules, enhanced access to data objects, 
enhancements to I/O and to execution control, and 
more intrinsic procedures, in particular for bit 
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processing. Fortran 2008 was published in 2010 [3], 
and is the current standard. 

Fortran concepts 

Programming languages have many features in 
common. In this section some that represent 
Fortran’s special strengths are briefly outlined. Its 
object-oriented features are, however, omitted, but 
these and all the other features are fully described in 
[4]. 

1. Array processing 
Fortran 95 allows variables and function results to 
be array valued. Such objects can be manipulated in 
much the same way as scalar objects. Thus, given 
the declaration2

 
real, dimension(10) :: a, b, c, x 

 
specifying four real, conformable arrays,  a, b, c 
and x, we might write: 
 
x = (-b + sqrt(b**2 – 4.0*a*c)/(2.0*a) 
 
to solve a set of  quadratic equations rather than just 
one. Scalar values within array expressions are 
‘broadcast’ across the whole extent of the array 
variables. In this example, the use of the where 
(masked assignment) construct would be necessary 
in order to avoid division by zero, if this is likely to 
occur: 
 
where (a /= 0.0)  
   x=(-b + sqrt(b**2 – 4.0*a*c)/(2.0*a) 
elsewhere 
   x = -huge(0.0) !large negative real 
end where  

An array assignment expressed with the help of 
indices is provided by the forall statement and 
construct. An example is 

      forall(i = 1:n) x(i, i) = s(i) 

where the individual assignments may be carried out 
in any order, and even simultaneously. In  

      forall(i=1:n, j=1:n, y(i,j)/=0.)  & 
                  x(j,i) = 1.0/y(i,j) 

the assignment is subject also to a masking 
condition., once again to avoid division by zero. 
Any procedure referenced within a forall 
statement or construct must have the pure attribute 

                                                           
2 Within the code extracts, Fortran keywords will be written in 
bold face, in order to distinguish them from variable names. 

to ensure that it has no side effects that could cause 
the result to depend on the order of execution. 

The sqrt function seen above is used as an 
elemental function: although defined in terms of 
scalars it returns an array-valued result for an array-
valued argument. Many intrinsic procedures are 
elemental, and a user-written procedure that is pure 
may be made elemental by adding the elemental 
keyword to its header line and by following certain 
rules. 
 
An array need not necessarily be specified with a 
fixed size. If a is an array dummy argument, it may 
be declared as an assumed-shape array 
 
real, dimension(:, :) :: a 

 
where the actual array bounds are transmitted 
between the two procedures at run time.  
 
Further, an array that is local to a procedure may be 
specified as an automatic array whose bounds 
depend on another argument, as in 
 
real, dimension(size(a)) :: work 
 
to define an array work whose size depends on that 
of another array a.  
 
Lastly, storage may be allocated dynamically to an 
array at run time. Given a specification as in: 
 
real, dimension(:, :), allocatable :: g  
 
we may write 
 
allocate(g(50, 100)) 
 
to give the required space to the array at run-time. 
The space may later be deallocated and then 
allocated afresh. The allocate and 
deallocate statements are equally useful for 
arrays that have the pointer attribute, in 
particular for dynamic arrays that are components of 
a derived data type. 
 
Given a rank-two array that has, one way or another, 
been given appropriate bounds, we may reference a 
single (scalar) element using a subscript notation as 
in 
 
grid(9, 15) 
 
A subsection of the array may be referenced using a 
triplet notation as in 
 
grid(1:10, 10:100:10) 
 
which is an array-valued subobject that may, in turn, 
appear in array expressions and assignments. It is 
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that subsection of grid that consists of its first ten 
elements in the first dimension and every tenth 
element in the second. It is a ten-by-ten, rank-two 
array. 
 
An array-valued constant is known as an array 
constructor. It has a variety of forms, a simple one 
being shown in 
 
grid(1:5,10) = (/1.0,2.0,3.0,4.0,5.0/) 
 
A pointer may be used as a dynamic alias to an array 
or to an array subobject. If we add the target 
attribute to the specification of grid, and define an 
appropriate pointer array as 
 
real, dimension(:), pointer :: window 

 
then the pointer assignment 
 
window => grid(0:9, 1) 
 
makes window a rank-one array of length ten. 
The many array functions defined by the standards 
are an important and integral part of the array-
processing language. 

2. Coarrays  

The objective of coarrays is to allow the 
simultaneous processing of arrays on multiple 
processors.  In this model, not only is data 
distributed over processors, as in an SIMD (Single 
Instruction Multiple Data) model, but also work, 
using the SPMD (Single Program Multiple Data) 
model. The syntax required makes only a small 
impact on the appearance of a program. 

Data distribution is achieved by specifying the 
relationship among memory images. Any object 
declared without using the corresponding syntax 
exists independently in all the images and can be 
accessed only from within its own image. Objects 
specified with this syntax have the additional 
property that they can be accessed directly from any 
other image. Thus, the statement 

real, dimension(512) [*] :: a, b 

specifies two coarrays, a and b, that have the same 
size (512) in each image. Execution by an image of 
the statement 

a(:) = b(:)[j] 

causes the array b from image j to be copied into its 
own array a (where square brackets are the notation 
used to access an object on another image). On a 
shared-memory machine, an implementation of a 

coarray might be as an array of a higher dimension. 
On a distributed memory machine with one physical 
processor per image, a coarray will probably be 
stored at the same address in each physical 
processor. 

Work is distributed as images, which are copies of 
the program each of which has a separate set of data 
objects and a separate flow of control. The number 
of images is a fixed value that is available at 
execution time via an inquiry function, 
num_images. The images execute asynchronously 
and the execution path in each may differ. The 
programmer has access to the image index via the 
this_image function. When synchronization 
between two images is required, use can be made of 
a set of intrinsic synchronization procedures, such as 
sync_lock or lock. Using these, it is possible to 
avoid race conditions whereby one image alters a 
value still required by another, or one image 
requires an altered value that is not yet available 
from another. Between synchronization points an 
image has no access to the fresh state of any other 
image. Any flushing of temporary memory, caches 
or registers is handled implicitly by the 
synchronization mechanisms themselves. Thus, a 
compiler can safely take advantage of all code 
optimizations on all processors between 
synchronization points without compromising data 
integrity. Where it might be necessary to limit 
execution of a code section to just one image at a 
time, a critical section may be defined using a 
critical… end critical construct. 

The codimensions of a coarray are specified in a 
similar way to the specifications of assumed-size 
arrays, and coarray sub-objects may be referenced in 
a similar way to sub-objects of normal arrays. 

The following example shows how coarrays might 
be used to read values in one image and distribute 
them to all the others: 

real :: value[*] 
…    
if(this_image() == 1) then      
! Only image 1 executes this construct. 
    read(*, *) value 
    do image = 2, num_images() 
       value[image] = value 
    end do 
end if 
call sync_all()                
! Execution on all images pauses at   
! this point until all images have                   
! reached it.  
 
Coarrays can be used in most of the ways that 
normal arrays can, the most notable restrictions 
being that they cannot be automatic arrays, cannot 
be used for a function result, cannot have the 
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pointer attribute, and cannot appear in a pure or 
elemental procedure. 

3. Abstract data types and data structures 
When an abstract data type has been defined, for 
instance by 
 
  type interval 
    real :: lower, upper 
  end type interval 

 
it is further possible to define the meanings 
associated with operations and assignments on 
objects of that type, or between an object of that 
type and an object of another derived or intrinsic 
type. The usual mechanism is to specify functions 
(for operations) or subroutines (for assignments) 
that perform the necessary tasks, and to place these 
in a module that can be accessed to gain access to 
the types, the operations and the assignments. An 
example that defines a type suitable for interval 
arithmetic, defines the operation to perform addition 
between two scalar objects of that type, and defines 
assignment of a real object to an object of type 
interval is: 
 
module intervals    
  type interval 
    real :: lower, upper 
  end type interval 
  interface operator(+) 
    module procedure add_interval 
  end interface 
  interface assignment(=) 
    module procedure interval_from_real 
  end interface 
contains 
  function add_interval(a,b) 
    type(interval) :: add_interval 
    type(interval), intent(in) :: a, b 
    add_interval%lower=a%lower+b%lower  
    add_interval%upper=a%upper+b%upper   
  end function add_interval                  
  subroutine interval_from_real(a,b) 
    type(interval), intent(out) :: a 
    real, intent(in)            :: b 
    a%lower = b 
    a%upper = b 
  end subroutine interval_from_real 
end module intervals  

 
A snippet of code that makes use of the facilities 
thus defined would be: 
 
program demo 
   use intervals 
   real           :: a = 1.0 
   type(interval) :: b, c 
   b = a     ! defined assignment 
   c = a     ! defined assignment  
   c = b + c ! defined operation 
   print *, a, b, c 
end program demo 
 

This main program and the module intervals 
together form a complete, executable program. 
 
Derived-data types may contain components that 
have the pointer attribute. This allows the 
construction of data structures of arbitrary 
complexity. If the elements of a sparse vector are to 
be held as a chain of variables, a suitable data type 
would be 
 
type entry 
   real                 :: value 
   integer              :: index 
   type(entry),pointer  :: next=>null() 
end type entry 

 
A chain can then be specified by 
 
type(entry), pointer :: chain 
 
and the first variable can be defined by, for example, 
 
allocate(chain) 
chain%value = 1.0 
chain%index = 10 
 
Normally, such a list would be manipulated with the 
aid of additional pointers that reference, for 
instance, its first and current entries, and with utility 
procedures for adding and removing entries, etc. 
Once again, it would be usual to package the type 
and the procedures that manipulate the list into a 
module. 

The status of Fortran 

1. Challenges from other languages 
Fortran has always had a slightly old-fashioned 
image. In the 1960s, the block-structured language 
Algol was regarded as superior to Fortran. In the 
1970s the more powerful PL/1 was expected to 
replace Fortran. Algol’s successors Pascal and Ada 
caused Fortran proponents some concern in the 
1980s. Meanwhile, it continued successfully as the 
workhorse of scientific computing. However, by the 
late 1980s, two developments did begin seriously to 
impinge on Fortran’s predominance in this field: 
Unix and object orientation. 
 
Unix brought with it the highly-successful general-
purpose language C, which was further developed 
into C++, an object-oriented language. C is widely 
used for all levels of system programming and made 
inroads into Fortran’s traditional numerical 
computing community. C++ came to dominate 
many programming applications especially those 
requiring sophisticated program interfaces. Another 
object-oriented language, Java, has also come into 
widespread use. 
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Fortran’s particular advantages as a high-end 
numerical language, especially where arrays are the 
main data object and/or where complex arithmetic is 
involved, remain. It is able to attain the highest 
achievable optimization, mainly because multi-
dimensional arrays are ‘natural’ objects and because 
its pointers are highly constrained. Nevertheless, 
whether modern Fortran will, in the long term, be 
able to withstand the immense pressure from other 
languages remains an open question. However, there 
is every sign that Fortran continues to be used to 
tackle major scientific computing problems, and will 
long remain a living memorial to the early pioneers. 
Indeed, at a Workshop on Software in High-Energy 
Physics in 1982, I predicted that: “Fortran is likely 
to remain into the next century as, at the very least, 
a special-purpose scientific and numerical language 
for large-scale, computing-intensive applications 
and, strengthened especially by its array 
capabilities, will be one of a small range of widely-
used languages in general use”. This turned out to 
be not too far from the truth! 

2. The international Fortran community 
Fortran is an international language both in the 
sense that it used throughout the world, and also in 
that the community of international users has, over 
the last 30 years, actively participated in the 
development of the standards. Furthermore, the 
Internet and the World-Wide Web have facilitated 
the development of international user communities, 
for instance the newsgroup comp.lang.fortran, and 
the discussion group at 

www.jiscmail.ac.uk/cgi-bin/webadmin?A0=comp-
fortran-90
These groups are important in the dissemination of 
Fortran news, such as announcements of new 
compilers, and as sources of help and advice to 
users in general. The ACM publishes Fortran 
Forum, a special interest publication on Fortran with 
an international readership and containing articles 
on Fortran language developments and user 
experience (see www.sigplan.org). A table detailing 
the progress by various vendors in their 
implementations of the latest two standards is 
maintained at  
www.fortranplus.co.uk/resources/fortran_2003_200
8_compiler_support.pdf. 
 
We thus see that there is a healthy user community, 
even if the language now occupies, in contrast to the 
past, only a niche in the world of programming, but 
one nevertheless concerned with large and important 
applications. Long may it continue! 
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