
The Seven Ages of Fortran

Michael Metcalf
Manfred-von-Richthofenstrasse 15

12101 Berlin, Germany
michaelmetcalf@compuserve.com

Abstract

When IBM's John Backus first developed the
Fortran programming language, back in 1957, he
certainly never dreamt that it would become a
world-wide success and still be going strong many
years later. Given the oft-repeated predictions of its
imminent demise, starting around 1968, it is a
surprise, even to some of its most devoted users, that
this much-maligned language is not only still with
us, but is being further developed for the demanding
applications of the future. What has made this
programming language succeed where most slip into
oblivion?

One reason is certainly that the language has been
regularly standardized. In this paper we will trace
the evolution of the language from its first version
and though six cycles of formal revision, and
speculate on how this might continue.

Now, modern Fortran is a procedural, imperative,
compiled language with a syntax well suited to a
direct representation of mathematical formulas.
Individual procedures may be compiled separately
or grouped into modules, either way allowing the
convenient construction of very large programs and
procedure libraries. Procedures communicate via
global data areas or by argument association. The
language now contains features for array processing,
abstract data types, dynamic data structures, object-
oriented programming and parallel processing.

Keywords: array processing, data abstraction,
object-oriented programming, optimization, history
of computing.

Language evolution

1. The First Age: Origins
In the early days of computing, programming was
tedious in the extreme – every tiny step had to be
coded as a separate machine instruction, and the
programmer had to be familiar with the intimate
details of the computer's operation. Spurred by a
perceived economic need to provide a form of
‘automatic programming’ to allow efficient use of
manpower and computers, Backus proposed, at the
end of 1953, to begin the development of the
Fortran programming language (the name being a
contraction of FORmula TRANslation). The
overriding objective of the development team was to

produce a compiler that would produce efficient
object code comparable to that of hand-written
assembly code.

Fortran came as a breakthrough. Instead of writing
some obscure hieroglyphics, say as an instruction to
divide two variables A and B and to save the result
in C, the programmer could now write a more
intelligible and natural statement, namely

 C = A/B

This is called expression abstraction, because
mathematical expressions could be written more-or-
less as they appear in a textbook. Herein lay the
secrets of Fortran’s initial rapid spread: scientists
could write programs to solve problems themselves,
in a familiar way and with only limited recourse to
professional programmers, and that same program,
once written, could be transported to any other
computer which had a Fortran compiler. The first
version, now known as FORTRAN I, contained
early forms of constructs that have survived to the
present day: simple and subscripted variables, the
assignment statement, a do-loop, mixed-mode
arithmetic, and input/output (I/O) specifications.

Many novel compiling techniques had to be
developed, and it was not until 1957 that the first
compiler was released to users of the target
machine, the IBM 704. First experience showed
that, indeed, it increased programmer efficiency and
allowed scientists and engineers to program easily
for themselves. The source form and syntax
liberated programmers from the rigid input formats
of assembly languages. Fortran was an immediate
success.

Ease of learning and stress on optimization are two
hallmarks of Fortran that have contributed to its
continued popularity.

Based on the experience with FORTRAN I, it was
decided to introduce a new version, FORTRAN II,
in 1958. The crucial differences between the two
were the introduction of subprograms, with their
associated concepts of shared data areas, and
separate compilation. FORTRAN II became the
basis for the development of compilers by other
manufacturers. A more advanced version was
developed for the IBM 704 – FORTRAN III – but it
was never released.

JCS&T Vol. 11 No. 1 April 2011

1

2. The Second Age: FORTRAN 66
In 1961, an IBM users’ organization requested from
IBM a new version, now called FORTRAN IV,
which contained type statements, the logical-if
statement, the possibility to pass procedure names as
arguments, and the data statement and block
data subprogram. Some original features, such as
device-dependent I/O statements, were dropped.

FORTRAN IV was released in 1962 and quickly
became available on other machines, but often in the
form of a dialect. Indeed, the proliferation of these
dialects led an American Standards Association
(ASA) Working Group to develop a standard
definition for the language. In 1966, a standard for
FORTRAN was published, based on FORTRAN IV.
This was the first programming language to achieve
recognition as a national, and subsequently
international (ISO, Geneva), standard, and is now
known as FORTRAN 66.

FORTRAN 66 was made available on almost every
computer made at that time, and was often pressed
into service for tasks for which it had never been
designed. Thus began a period during which it was
very popular with scientists, but newer, more
modern languages were appearing, including
Algol 60, whose ‘superior’ concepts led to
predictions that it would rapidly replace ‘old-
fashioned` Fortran because of the latter’s
limitations. It became increasingly criticized,
especially by academic computer scientists.

3. The Third Age: FORTRAN 77
The permissiveness of the FORTRAN 66 standard,
whereby any extensions could be implemented on a
given processor so long as it still correctly processed
a standard-conforming program, led again to a
proliferation of dialects. These dialects typically
provided much-needed additional features, such as
bit handling, or gave access to hardware-specific
features, such as byte-oriented data types. Since the
rules of ASA’s successor, the American National
Standards Institute (ANSI), required that a standard
be reaffirmed, withdrawn or revised after a five-year
period has elapsed, the reformed FORTRAN
committee, X3J3, decided on a revision. This was
published by ANSI, and shortly afterwards by ISO,
in 1978, and became known as FORTRAN 77. The
new standard brought with it many new features, for
instance the if…then…else construct (from the
push for ‘structured programming’), a character data
type, and much enhanced I/O.

The new language was rather slow to spread. This
was due in part to certain conversion problems and
also to the decision of one large manufacturer, IBM,
not to introduce a new compiler until 1982. It was
thus only in the mid-1980s that FORTRAN 77

finally took over from FORTRAN 66 as the most
used version. Ultimately, it became a hugely
successful language for which compilers were
available on every type of computer from the PC to
the mighty Cray. Programs written in FORTRAN 77
were routinely used to perform such diverse
calculations as designing the shapes of airplane
fuselages, predicting the structures of organic
molecules, and simulating the flow of winds over
mountains.

Algol is now a dead language, however it begat
descendents, most notably Pascal and Ada, and
these too, in their time, together with IBM's PL/1,
were variously considered to be about to deliver the
coup-de-grâce to FORTRAN. But the new standard
lent it a new vigour that allowed it to maintain its
position as the most widely used scientific
applications language of the time. However, it began
to yield its position as a teaching language.

The entire issue of the journal [1] is devoted to
papers on the early history of Fortran.

4. The Fourth Age: The battle for Fortran 90
As computers doubled in power every few years,
and became able to perform calculations on many
numbers simultaneously, by the use of processors
running in parallel, and as the problems to be solved
became ever more complex, the question arose as to
whether FORTRAN 77 was still adequate. (And
there were a large number of user requests left over
that it had not been possible to include in it.)
Programs of over a million lines became
commonplace, and managing their complexity and
having the means to write them reliably and
understandably – so that they produce correct results
and could later be modified – were desperately
required.

Thus began the battle over Fortran 90.1 Fortran had
been attacked by computer scientists on two
grounds. One was because of its positively
dangerous aspects, for instance the lack of any
inherent protection against overwriting the contents
of memory in the computer, including the program
instructions themselves! The other was its lack of
indispensible language features, such as the ability
to control the logical flow through a program in a
clearly structured manner. On the other hand,
Fortran had always been a relatively easy language
to learn and that, combined with its emphasis on
efficient, high-speed processing, had kept it
attractive to many busy scientists. Thus, the
standards committees were faced with the almost
impossible task of modernising the language and
making it safer to use, whilst at the same time

1 And a change to lower-case spelling.

JCS&T Vol. 11 No. 1 April 2011

2

keeping it ‘Fortran-like’ and efficient. Fortran 90
was the answer.

There were other justifications for continuing to
revise the definition of the language. As well as
standardizing vendor extensions, there was a need to
respond to the developments in language design that
had been exploited in other languages, such as APL,
Algol 68, Pascal, Ada, C and C++. Here, X3J3
could draw on the obvious benefits of concepts like
data hiding. In the same vein was the need to begin
to provide an alternative to dangerous storage
association, to abolish the rigidity of the outmoded
source form, and to improve further on the
regularity of the language, as well as to increase the
safety of programming in the language and to
tighten the conformance requirements. To preserve
the vast investment in Fortran 77 codes, the whole
of Fortran 77 was retained as a subset. However,
unlike the previous standard, which resulted almost
entirely from an effort to standardize existing
practices, the Fortran 90 standard was much more a
development of the language, introducing features
that were new to Fortran, although based on
experience in other languages. This tactic, in fact,
proved to be highly controversial, both within the
committee and with the wider community. Vested
interests got in on the act, determined, depending on
their persuasion, and in particular on whether they
were users or vendors, either to extend Fortran to
cope better with new computers and new problem
domains or to stop the whole process in its tracks.
The technical and political infighting reached
legendary proportions. It was not until 1991, after
much vigorous debate and thirteen years’ work, that
Fortran 90 was finally published by ISO.

It introduced a new notation that allows arrays of
numbers, for instance matrices, to be handled in a
natural and clear way, and added many new built-in
facilities for manipulating such arrays, for example,
to add together all the numbers in an array, a single
command (sum) is all that is required. The use of
the array-handling facilities made scientific
programming simpler, less error prone and, on the
most powerful computers whose hardware can
handle vectors of numbers, potentially more
efficient than ever.

To make programs more reliable, the language
introduced a wealth of features designed to catch
programming errors during the early phase of
compilation, when they can be quickly and cheaply
corrected. These features included new ways of
structuring programs and the ability to ensure that
the components of a program, the subprograms, ‘fit
together’ properly. For instance, Fortran 90 makes it
simple to ensure that an argument mismatch can
never arise as it enables programmers to construct
verifiable interfaces between subprograms.

In summary, the main features of Fortran 90 were,
first and foremost, the array language and data
abstraction. The former is built on whole array
operations and assignments, array sections, intrinsic
procedures for arrays, and dynamic storage. It was
designed with optimization in mind. The latter is
built on modules and module procedures, derived
data types, operator overloading and generic
interfaces, together with pointers. Also important
were the new facilities for numerical computation,
including a set of numeric inquiry functions, the
parameterization of the intrinsic types, new control
constructs – select case and new forms of do,
internal and recursive procedures and optional and
keyword arguments, improved I/O facilities, and
many new intrinsic procedures. Last but not least
were the new free source form, an improved style of
attribute-oriented specifications, the implicit
none statement, and a mechanism for identifying
redundant features for subsequent removal from the
language. The requirement on compilers to be able
to identify syntax extensions, and to report why a
program had been rejected, was also significant. The
resulting language was not only a far more powerful
tool than its predecessor, but a safer and more
reliable one too. Storage association, with its
attendant dangers, was not abolished, but rendered
unnecessary. Indeed, experience showed that
compilers detected errors far more frequently than
before, resulting in a faster development cycle. The
array syntax and recursion also allowed quite
compact code to be written, a further aid to safe
programming. Fortran 90 also allowed programmers
to tailor data types to their exact needs. Another
advance was the language's new ability to structure
program data into arbitrarily complex patterns –
lists, graphs, trees, etc. – and to manipulate these
structures conveniently. This is achieved through the
use of pointers. A related feature was the ability to
allocate storage for program data dynamically.

After this revision, Fortran became, it must be
admitted, a different language, as the entire issue of
the journal [2], which is devoted to various aspects
of the development of Fortran 90, shows.

5. The Fifth Age: A minor revision, Fortran 95
Following the publication of Fortran 90, two further
significant developments concerning the language
occurred. The first was the continued operation of
the two standards committees, J3 (as X3J3 became
known) and the international WG5, and the second
was the founding of the High Performance Fortran
Forum (HPFF).

Early on in their deliberations, the committees
decided on a strategy whereby a minor revision of
Fortran 90 would be prepared by the mid-1990s and
a further revision by about the year 2000. The first
revision, Fortran 95, is the subject of this section.

JCS&T Vol. 11 No. 1 April 2011

3

 The HPFF was set up in an effort to define a set of
extensions to Fortran, such that it would be possible
to write portable, single-threaded code when using
parallel computers for handling problems involving
large sets of data that can be represented by regular
grids. This version of Fortran was to be known as
High Performance Fortran (HPF), and Fortran 90
was chosen as the base language. Thus, HPF was a
superset of Fortran 90, the main extensions being
expressed in the form of directives. However, it did
become necessary also to add some additional
syntax, as not all of the desired features could be
accommodated in the form of directives.

It was evident that, in order to avoid the
development of divergent dialects of Fortran, it
would be desirable to include the new syntax
defined by HPF in Fortran 95 and, indeed, these
features were the most significant new ones that
Fortran 95 introduced. The other changes consisted
mainly of what are known as corrections,
clarifications and interpretations. Only a small
number of other pressing but minor language
changes were made.

A new ISO standard, replacing Fortran 90, was
adopted in 1997.

6. The Sixth Age: Fortran 2003
Without a break, standardization continued, and the
following language standard, Fortran 2003, was
published, somewhat delayed, in 2004. The major
enhancements were:

• Derived type enhancements: parameterized

derived types, improved control of accessibility,
improved structure constructors, and finalizers.

• Object-oriented programming support: type
extension, inheritance, polymorphism, dynamic
type allocation, and type-bound procedures.

• Data manipulation enhancements: deferred type
parameters, the volatile attribute, explicit
type specification in array constructors and
allocate statements, pointer enhancements,
extended initialization expressions, and
enhanced intrinsic procedures.

• Input/output enhancements: asynchronous
transfer, stream access, user-specified transfer
operations for derived types, user-specified
control of rounding during format conversions,
named constants for pre-connected units, the
flush statement, regularization of keywords,
and access to error messages.

• Procedure pointers.
• Support for the exceptions of the IEEE

Floating-Point Standard (IEEE 1989).
• Interoperability with the C programming

language.

• Support for international usage: access to ISO
10646 4-byte characters and the choice of
decimal or comma in numeric formatted
input/output.

• Enhanced integration with the host operating
system: access to command-line arguments,
environment variables, and processor error
messages.

In addition, there were numerous minor changes but
Fortran 2003 was essentially upwards compatible
with the Fortran 95 standard that it replaced. The
enhancements had, after all, been developed in
response to demands from users and to keep Fortran
relevant to the needs of programmers, without
losing the vast investment in existing programs.

Related standards
No Fortran standard up to and including Fortran
2003 included any significant feature intended
directly to facilitate parallel programming. Rather,
this has had to be achieved through the intermediary
of ad hoc industry standards, in particular HPF,
MPI, OpenMP and Posix Threads.

HPF directives take the form of Fortran comment
lines that are recognized as such only by an HPF
processor. An example is

 !HPF$ ALIGN WITH b :: a1, a2, a3

to align three conformable (matching in shape)
arrays with a fourth, thus ensuring locality of
reference. Further directives allow, for instance,
aligned arrays to be distributed over a set of
processors.

MPI is a library specification for message passing.
OpenMP supports multi-platform, shared-memory
parallel programming and consists of a set of
compiler directives, library routines, and
environment variables that determine run-time
behaviour. Posix Threads is again a library
specification, for multithreading.

MPI and OpenMP have both become widespread,
but HPF has ultimately met with little success.

7. The Seventh Age: Fortran 2008
Notwithstanding the fact that Fortran 2003-
conformant compilers have been very slow to
appear, the standardization committees proceeded
with yet another standard, Fortran 2008. Its single
most important new feature is coarray handling
(described below). Further, the do concurrent
form of loop control and the contiguous attribute
are introduced. Other major new features include:
sub-modules, enhanced access to data objects,
enhancements to I/O and to execution control, and
more intrinsic procedures, in particular for bit

JCS&T Vol. 11 No. 1 April 2011

4

http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Environment_variable

processing. Fortran 2008 was published in 2010 [3],
and is the current standard.

Fortran concepts

Programming languages have many features in
common. In this section some that represent
Fortran’s special strengths are briefly outlined. Its
object-oriented features are, however, omitted, but
these and all the other features are fully described in
[4].

1. Array processing
Fortran 95 allows variables and function results to
be array valued. Such objects can be manipulated in
much the same way as scalar objects. Thus, given
the declaration2

real, dimension(10) :: a, b, c, x

specifying four real, conformable arrays, a, b, c
and x, we might write:

x = (-b + sqrt(b**2 – 4.0*a*c)/(2.0*a)

to solve a set of quadratic equations rather than just
one. Scalar values within array expressions are
‘broadcast’ across the whole extent of the array
variables. In this example, the use of the where
(masked assignment) construct would be necessary
in order to avoid division by zero, if this is likely to
occur:

where (a /= 0.0)
 x=(-b + sqrt(b**2 – 4.0*a*c)/(2.0*a)
elsewhere
 x = -huge(0.0) !large negative real
end where

An array assignment expressed with the help of
indices is provided by the forall statement and
construct. An example is

 forall(i = 1:n) x(i, i) = s(i)

where the individual assignments may be carried out
in any order, and even simultaneously. In

 forall(i=1:n, j=1:n, y(i,j)/=0.) &
 x(j,i) = 1.0/y(i,j)

the assignment is subject also to a masking
condition., once again to avoid division by zero.
Any procedure referenced within a forall
statement or construct must have the pure attribute

2 Within the code extracts, Fortran keywords will be written in
bold face, in order to distinguish them from variable names.

to ensure that it has no side effects that could cause
the result to depend on the order of execution.

The sqrt function seen above is used as an
elemental function: although defined in terms of
scalars it returns an array-valued result for an array-
valued argument. Many intrinsic procedures are
elemental, and a user-written procedure that is pure
may be made elemental by adding the elemental
keyword to its header line and by following certain
rules.

An array need not necessarily be specified with a
fixed size. If a is an array dummy argument, it may
be declared as an assumed-shape array

real, dimension(:, :) :: a

where the actual array bounds are transmitted
between the two procedures at run time.

Further, an array that is local to a procedure may be
specified as an automatic array whose bounds
depend on another argument, as in

real, dimension(size(a)) :: work

to define an array work whose size depends on that
of another array a.

Lastly, storage may be allocated dynamically to an
array at run time. Given a specification as in:

real, dimension(:, :), allocatable :: g

we may write

allocate(g(50, 100))

to give the required space to the array at run-time.
The space may later be deallocated and then
allocated afresh. The allocate and
deallocate statements are equally useful for
arrays that have the pointer attribute, in
particular for dynamic arrays that are components of
a derived data type.

Given a rank-two array that has, one way or another,
been given appropriate bounds, we may reference a
single (scalar) element using a subscript notation as
in

grid(9, 15)

A subsection of the array may be referenced using a
triplet notation as in

grid(1:10, 10:100:10)

which is an array-valued subobject that may, in turn,
appear in array expressions and assignments. It is

JCS&T Vol. 11 No. 1 April 2011

5

that subsection of grid that consists of its first ten
elements in the first dimension and every tenth
element in the second. It is a ten-by-ten, rank-two
array.

An array-valued constant is known as an array
constructor. It has a variety of forms, a simple one
being shown in

grid(1:5,10) = (/1.0,2.0,3.0,4.0,5.0/)

A pointer may be used as a dynamic alias to an array
or to an array subobject. If we add the target
attribute to the specification of grid, and define an
appropriate pointer array as

real, dimension(:), pointer :: window

then the pointer assignment

window => grid(0:9, 1)

makes window a rank-one array of length ten.
The many array functions defined by the standards
are an important and integral part of the array-
processing language.

2. Coarrays

The objective of coarrays is to allow the
simultaneous processing of arrays on multiple
processors. In this model, not only is data
distributed over processors, as in an SIMD (Single
Instruction Multiple Data) model, but also work,
using the SPMD (Single Program Multiple Data)
model. The syntax required makes only a small
impact on the appearance of a program.

Data distribution is achieved by specifying the
relationship among memory images. Any object
declared without using the corresponding syntax
exists independently in all the images and can be
accessed only from within its own image. Objects
specified with this syntax have the additional
property that they can be accessed directly from any
other image. Thus, the statement

real, dimension(512) [*] :: a, b

specifies two coarrays, a and b, that have the same
size (512) in each image. Execution by an image of
the statement

a(:) = b(:)[j]

causes the array b from image j to be copied into its
own array a (where square brackets are the notation
used to access an object on another image). On a
shared-memory machine, an implementation of a

coarray might be as an array of a higher dimension.
On a distributed memory machine with one physical
processor per image, a coarray will probably be
stored at the same address in each physical
processor.

Work is distributed as images, which are copies of
the program each of which has a separate set of data
objects and a separate flow of control. The number
of images is a fixed value that is available at
execution time via an inquiry function,
num_images. The images execute asynchronously
and the execution path in each may differ. The
programmer has access to the image index via the
this_image function. When synchronization
between two images is required, use can be made of
a set of intrinsic synchronization procedures, such as
sync_lock or lock. Using these, it is possible to
avoid race conditions whereby one image alters a
value still required by another, or one image
requires an altered value that is not yet available
from another. Between synchronization points an
image has no access to the fresh state of any other
image. Any flushing of temporary memory, caches
or registers is handled implicitly by the
synchronization mechanisms themselves. Thus, a
compiler can safely take advantage of all code
optimizations on all processors between
synchronization points without compromising data
integrity. Where it might be necessary to limit
execution of a code section to just one image at a
time, a critical section may be defined using a
critical… end critical construct.

The codimensions of a coarray are specified in a
similar way to the specifications of assumed-size
arrays, and coarray sub-objects may be referenced in
a similar way to sub-objects of normal arrays.

The following example shows how coarrays might
be used to read values in one image and distribute
them to all the others:

real :: value[*]
…
if(this_image() == 1) then
! Only image 1 executes this construct.
 read(*, *) value
 do image = 2, num_images()
 value[image] = value
 end do
end if
call sync_all()
! Execution on all images pauses at
! this point until all images have
! reached it.

Coarrays can be used in most of the ways that
normal arrays can, the most notable restrictions
being that they cannot be automatic arrays, cannot
be used for a function result, cannot have the

JCS&T Vol. 11 No. 1 April 2011

6

pointer attribute, and cannot appear in a pure or
elemental procedure.

3. Abstract data types and data structures
When an abstract data type has been defined, for
instance by

 type interval
 real :: lower, upper
 end type interval

it is further possible to define the meanings
associated with operations and assignments on
objects of that type, or between an object of that
type and an object of another derived or intrinsic
type. The usual mechanism is to specify functions
(for operations) or subroutines (for assignments)
that perform the necessary tasks, and to place these
in a module that can be accessed to gain access to
the types, the operations and the assignments. An
example that defines a type suitable for interval
arithmetic, defines the operation to perform addition
between two scalar objects of that type, and defines
assignment of a real object to an object of type
interval is:

module intervals
 type interval
 real :: lower, upper
 end type interval
 interface operator(+)
 module procedure add_interval
 end interface
 interface assignment(=)
 module procedure interval_from_real
 end interface
contains
 function add_interval(a,b)
 type(interval) :: add_interval
 type(interval), intent(in) :: a, b
 add_interval%lower=a%lower+b%lower
 add_interval%upper=a%upper+b%upper
 end function add_interval
 subroutine interval_from_real(a,b)
 type(interval), intent(out) :: a
 real, intent(in) :: b
 a%lower = b
 a%upper = b
 end subroutine interval_from_real
end module intervals

A snippet of code that makes use of the facilities
thus defined would be:

program demo
 use intervals
 real :: a = 1.0
 type(interval) :: b, c
 b = a ! defined assignment
 c = a ! defined assignment
 c = b + c ! defined operation
 print *, a, b, c
end program demo

This main program and the module intervals
together form a complete, executable program.

Derived-data types may contain components that
have the pointer attribute. This allows the
construction of data structures of arbitrary
complexity. If the elements of a sparse vector are to
be held as a chain of variables, a suitable data type
would be

type entry
 real :: value
 integer :: index
 type(entry),pointer :: next=>null()
end type entry

A chain can then be specified by

type(entry), pointer :: chain

and the first variable can be defined by, for example,

allocate(chain)
chain%value = 1.0
chain%index = 10

Normally, such a list would be manipulated with the
aid of additional pointers that reference, for
instance, its first and current entries, and with utility
procedures for adding and removing entries, etc.
Once again, it would be usual to package the type
and the procedures that manipulate the list into a
module.

The status of Fortran

1. Challenges from other languages
Fortran has always had a slightly old-fashioned
image. In the 1960s, the block-structured language
Algol was regarded as superior to Fortran. In the
1970s the more powerful PL/1 was expected to
replace Fortran. Algol’s successors Pascal and Ada
caused Fortran proponents some concern in the
1980s. Meanwhile, it continued successfully as the
workhorse of scientific computing. However, by the
late 1980s, two developments did begin seriously to
impinge on Fortran’s predominance in this field:
Unix and object orientation.

Unix brought with it the highly-successful general-
purpose language C, which was further developed
into C++, an object-oriented language. C is widely
used for all levels of system programming and made
inroads into Fortran’s traditional numerical
computing community. C++ came to dominate
many programming applications especially those
requiring sophisticated program interfaces. Another
object-oriented language, Java, has also come into
widespread use.

JCS&T Vol. 11 No. 1 April 2011

7

Fortran’s particular advantages as a high-end
numerical language, especially where arrays are the
main data object and/or where complex arithmetic is
involved, remain. It is able to attain the highest
achievable optimization, mainly because multi-
dimensional arrays are ‘natural’ objects and because
its pointers are highly constrained. Nevertheless,
whether modern Fortran will, in the long term, be
able to withstand the immense pressure from other
languages remains an open question. However, there
is every sign that Fortran continues to be used to
tackle major scientific computing problems, and will
long remain a living memorial to the early pioneers.
Indeed, at a Workshop on Software in High-Energy
Physics in 1982, I predicted that: “Fortran is likely
to remain into the next century as, at the very least,
a special-purpose scientific and numerical language
for large-scale, computing-intensive applications
and, strengthened especially by its array
capabilities, will be one of a small range of widely-
used languages in general use”. This turned out to
be not too far from the truth!

2. The international Fortran community
Fortran is an international language both in the
sense that it used throughout the world, and also in
that the community of international users has, over
the last 30 years, actively participated in the
development of the standards. Furthermore, the
Internet and the World-Wide Web have facilitated
the development of international user communities,
for instance the newsgroup comp.lang.fortran, and
the discussion group at

www.jiscmail.ac.uk/cgi-bin/webadmin?A0=comp-
fortran-90
These groups are important in the dissemination of
Fortran news, such as announcements of new
compilers, and as sources of help and advice to
users in general. The ACM publishes Fortran
Forum, a special interest publication on Fortran with
an international readership and containing articles
on Fortran language developments and user
experience (see www.sigplan.org). A table detailing
the progress by various vendors in their
implementations of the latest two standards is
maintained at
www.fortranplus.co.uk/resources/fortran_2003_200
8_compiler_support.pdf.

We thus see that there is a healthy user community,
even if the language now occupies, in contrast to the
past, only a niche in the world of programming, but
one nevertheless concerned with large and important
applications. Long may it continue!

References
[1] Annals of the History of Computing. Vol. 6,
No. 1 (1984).
[2] Computer Standards & Interfaces, Vol. 18
(1996).
[3] ISO/IEC 1539-1 : 2010. ISO, Geneva,
Switzerland.
[4] Metcalf, M., Reid. J. and Cohen, M. (2011).
Modern Fortran Explained. Oxford University
Press, Oxford and New York.

JCS&T Vol. 11 No. 1 April 2011

8

http://www.jiscmail.ac.uk/lists/comp-fortran-90
http://www.jiscmail.ac.uk/lists/comp-fortran-90
http://www.sigplan.org/
http://www.fortranplus.co.uk/resources/fortran_2003_2008_compiler_support.pdf
http://www.fortranplus.co.uk/resources/fortran_2003_2008_compiler_support.pdf

	invited: Invited Paper:

