
Changes to the draft Fortran 2008
standard since the 2008 AGM

John Reid,

Convener ISO Fortran Working Group

Abstract

A draft of the Fortran 2008 standard was out for
country comments, with a deadline of 31 August
2008. The comments were considered at the
Tokyo meeting of WG5 in November 2008.

We describe the main changes that were agreed.
It was decided that no further technical changes
be made unless a serious flaw is found.

BCS Fortran
11 June 2009



Locks

Locks control access to data that is referenced or
defined by more than one image.

A lock is a scalar variable of the derived type
lock_type . It must be a coarray or a subobject
of a coarray. It is either

1. ‘locked’ by an image, or

2. ‘unlocked’ – its initial value.

The only way to change the value is by an image
executing a lock statement or by the image that
locked it executing an unlock statement.

The example illustrates the use. Each image has
its own queue; any image can add a task to any
queue.

2



module queue_manager
use iso_fortran_env,only:lock_type
type task

:
end type
type(lock_type) :: q_lock[*]
type(task) :: q(100)[*]
integer :: q_size[*]

contains
subroutine get_task(job)
type(task),intent(out) :: job
lock(q_lock)
job=q(q_size)
q_size=q_size-1

unlock(q_lock)
end subroutine get_task
subroutine put_task(job,image)
type(task),intent(in) :: job
integer,intent(in) :: image
lock(q_lock[image])

q_size[image]=q_size[image]+1
q(q_size[image])[image] = job

unlock(q_lock[image])
end subroutine put_task

end module queue_manager

3



If a lock statement is executed for a lock
variable that is locked by another image, the
image waits for the lock to be unlocked by that
image.

There is a form of the lock statement that avoids
a wait when the lock variable is locked:
logical :: success
lock(q_lock,acquired_lock=success)
If the variable is unlocked, it is locked and the
value of success is set to true; otherwise,
success is set to false and there is no wait.

Note that a critical section
critical

:
end critical

is just like a pair of lock and unlock statements
with its own lock variable.

4



Atomic subroutines

The role of volatile coarrays in a spin-wait loop
has been replaced by atomic variables whose
values can be changed only by special
subroutines.

use, intrinsic :: iso_fortran_env
logical(atomic_logical_kind) :: &

alk[*]=.true.
logical :: val
integer :: iam, p, q

:
iam = this_image()
if (iam == p) then

sync memory
call atomic_define(alk[q],.false.)

else if (iam == q) then
val = .true.
do while (val)

call atomic_ref(val,alk)
end do
sync memory

end if

5



Volatile variables

For coarrays, volatile now as for non-coarrays.

An object that is associated with a coarray has the
volatile attribute if and only if the coarray has
the volatile attribute.

Volatile variables are not permitted in a pure
procedure.

6



Generalized output editing

For output of real or complex data that is not an
IEEE infinity or NaN, the G0 and G0.d edit
descriptors follow the rules for the Gw.dEe edit
descriptor, except that any leading or trailing
blanks are removed. Reasonable processor-
dependent values of w, d (if not specified), and e
are used with each output value.

Minor changes

A large number of minor changes were agreed.

7


