
The new features of Fortran 2003

David Muxworthy
BSI Fortran Convenor

Pages in Fortran Standards

0

100

200

300

400

500

600

700
19

66
19

67
19

68
19

69
19

70
19

71
19

72
19

73
19

74
19

75
19

76
19

77
19

78
19

79
19

80
19

81
19

82
19

83
19

84
19

85
19

86
19

87
19

88
19

89
19

90
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08

Year

P
ag

es

Major extensions

• Standardized interoperability with C
• Object-oriented support
• Derived-type enhancements
• IEEE 754 support
• Numerous data manipulation enhancements
• Numerous input/output enhancements

Minor incompatibilities
with Fortran 95

• carriage control for printer output has been
removed from the standard

• list-directed and namelist output of real zeros is
changed

 output of real zeros in these contexts always uses F rather than E
format

• if the processor can distinguish +0.0 and -0.0, use
is made of this by ATAN2 and by LOG, SQRT if
they have complex arguments

 e.g. result of ATAN2 or LOG may be -π rather than π

Characters and
source form

• the default character set is extended to include:
 ~ | \ [] { } @ # grave accent, circumflex accent

(but not acute accent)
 only [and] are used and are synonyms for (/ and /)

• variable names may be to 63 characters

• statements may be up to 256 lines

'International'
(non-anglophone) usage

• explicit accommodation of 10646 characters (but
not necessary for processors to support 10646)

• ability to specify decimal separator in internal or
external files as POINT or COMMA

Data types and
specifications

Many new facilities, including:
• deferred type parameters
 length type parameters of certain entities may be changed during

execution

• VOLATILE attribute
 for interacting with non-Fortran processes

• ASYNCHRONOUS attribute
 for specifying that a variable may be subject to asynchronous

input/output

• type specification for array constructors, e.g.
 [CHARACTER(LEN=8) :: ’Fortran’, ’C’, ’Algol 68’]

More data manipulation
enhancements

• specification and initialization expressions are
extended by removal of some restrictions

• complex literals are extended to accept named
constants, e.g.

 (0., PI) where PI is a previously declared real constant

• MIN and MAX extended to accept character
arguments

Derived type
enhancements

• the kind, length and shape of derived type
components may be specified when the type is
used

• different components may have different
accessibility

• improved structure constructors
• finalizers
• derived-type input/output
• components may be allocatable

ASSOCIATE construct

This allows a complex expression or object to be
denoted by a simple symbol

Examples:
associate (z => exp(-(x**2+y**2)) * cos(theta))
 print *, a+z, a-z
end associate

associate (array => ax%b(i,:)%c)
 array(n)%ev = array(n-1)%ev
end associate

Enumerators

Enumerators are provided to interoperate with the
corresponding C enumeration type

Example:
enum, bind(c)

enumerator :: red = 4, blue = 9
enumerator yellow

end enum

Procedure pointers

Pointers are extended to point to procedures, as
well as variables, using a new PROCEDURE
statement.

Example:
procedure (real_func), pointer :: p=> null()
where the interface to real_func has already been

defined
...
p => bessel
write (*, *) p(2.5) !-- bessel(2.5)

Input/output enhancements

There are many detailed enhancements, including:
• asynchronous transfer
• stream, rather than record, access
• named constants for preconnected units
• FLUSH statement
• access to error messages
• derived-type i/o
• control over rounding mode at internal to external

real number conversion

IEEE support

If the processor supports some or all of IEC 60559
(IEEE 754) arithmetic, the standard provides
facilities to:
• query which IEEE facilities are provided
• access the facilities for IEEE arithmetic, exception

handling, rounding, use of certain IEEE functions,
etc.

Enhanced access to
system environment

new procedures, including
• GET_COMMAND
• GET_COMMAND_ARGUMENT
• GET_ENVIRONMENT_VARIABLE
• COMMAND_ARGUMENT_COUNT

IOMSG=character-variable specifier in OPEN,
CLOSE, READ, WRITE

Interoperability with C
Uses intrinsic module ISO_C_BINDING to define named

constants and derived types
allows for interoperability of:
• intrinsic types
• pointer types
• derived types
• scalars and arrays
• procedures and procedure interfaces
• C global variables
• C functions
but not (yet):
• procedures with data pointer, allocatable, assumed-shape

array or optional dummy arguments

Interoperability with C
example part 1

C Function Prototype:
 int C_Library_Function(void* sendbuf, int sendcount, int

*recvcounts);
Fortran Module:
module ftn_c

interface
 integer (c_int) function C_Library_Function &

(sendbuf, sendcount, recvcounts), &
bind(c,name=’C_Library_Function’)
 use iso_c_binding
 implicit none
 type (c_ptr), value :: sendbuf
 integer (c_int), value :: sendcount
 type (c_ptr), value :: recvcounts
 end function C_Library_Function

 end interface
end module ftn_c

Interoperability with C
example part 2

Fortran Calling Sequence:

use iso_c_binding, only: c_int, c_float, c_loc
use ftn_c
...
real (c_float), target :: send(100)
integer (c_int) :: sendcount
integer (c_int), allocatable, target ::

recvcounts(100)
...
allocate(recvcounts(100))
...
call C_Library_Function(c_loc(send), sendcount, &
 c_loc(recvcounts))

Object-oriented support

• enhanced data abstraction
 one type may extend the definition of another

• polymorphism
 allows type of a variable to vary at run time

• dynamic type allocation

• SELECT TYPE construct

• type-bound procedures

Further information

For a far more detailed (38 page) overview of the
new features in Fortran 2003 relative to
Fortran 95 see "The New Features of Fortran 2003"
by John Reid, at

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1648.pdf

