
A REVIEW OF

SOME DIALECTS OF

FORTRAN

ALCOCK SHEARING & PARTNERS

 8 IDDESLEIGH HOUSE, TELEPHONE
 CAXTON STREET, 01-799 3644
 LONDON S.W.1.

A REVIEW OF

SOME DIALECTS OF

FORTRAN

by David Muxworthy of
The Edinburgh Regional Computing Centre

and Brian Shearing of
Alcock Shearing and Partners

This document reviews various
implementations of the language
FORTRAN in comparison with the
standard dialect published by
the American Standards Institute.

First Edition February 1970

Second Edition August 1970

This electronic copy was scanned from the 1970 typescript in December 2006 and laid out
as a near facsimile of the original. Any remaining editing errors are the
responsibility of David Muxworthy.

A REVIEW OF SOME DIALECTS OF FORTRAN

PREFACE TO THE SECOND EDITION

In this edition we have corrected some errors found in our first
edition. We have also altered the text to reflect some of the changes
made to the compilers since our first edition. Changes occur at such a
rate, however, that it is impossible for us to be right up to date.

We have been told that a compiler's limitations should not be classed
as "differences" between it and the Standard. This is fair comment; we
would not wish to discourage manufacturers from publishing the limits
their compilers have. But we have retained all this information none
the less; it is much too valuable to throw away.

D.T. Muxworthy
B.H. Shearing

August 1970

A REVIEW OF SOME DIALECTS OF FORTRAN

CHAPTER PAGE

1. INTRODUCTION 1
1.1 The Aims of this Report 1
1.2 The Form of this Report 1
1.3 The Compilers Examined 2
1.4 Acknowledgements 3
1.5 References 3

2. THE WRITTEN FORM OF FORTRAN 5
2.1 The Character Set 6
2.2 Comments 7
2.3 Names 8
2.4 The Order of Statements 9
2.5 Writing a Statement 10

3. DECLARING AND MANIPULATING DATA 11
3.1 Arithmetic Expressions 12
3.2 Assignment 13
3.3 COMMON 14
3.4 DATA 15
3.5 Declaring an Array 16
3.6 DIMENSION 17
3.7 EQUIVALENCE 18
3.8 EXTERNAL 19
3.9 The Initial Values of Variables 20
3.10 Precision 21
3.11 Relational and Logical Expressions 23
3.12 Statement Functions 24
3.13 Subscripts 25
3.14 Types of Data 26
3.15 Type Statements 27

4. FLOW OF CONTROL WITHIN A SUBPROGRAM 28
4.1 Arithmetic IF 29
4.2 ASSIGN 30
4.3 Assigned GO TO 31
4.4 Computed GO TO 32
4.5 CONTINUE 33
4.6 DO 34
4.7 Logical IF 35
4.8 PAUSE 36
4.9 STOP 37

5. CONNECTIONS BETWEEN SUBPROGRAMS 38
5.1 Arguments of Functions 39
5.2 Basic External Functions 40
5.3 BLOCK DATA 41
5.4 CALL 42
5.5 FUNCTION 44
5.6 Intrinsic Functions 45
5.7 Own Variables in Subprograms 46
5.8 RETURN 47
5.9 SUBROUTINE 48

6. INPUT AND OUTPUT 49
6.1 BACKSPACE 50
6.2 ENDFILE 51
6.3 FORMAT 52
6.4 I/O Lists 55
6.5 READ and WRITE 56
6.6 REWIND 57
6.7 Unit Numbers 58

7. SOME POPULAR EXTENSIONS 59
7.1 ABNORMAL 60
7.2 BUFFER IN and OUT 61
7.3 Debugging Aids 62
7.4 Direct Access I/O 63
7.5 ENCODE and DECODE 64
7.6 ENTRY 65
7.7 Fortran II I/O 66
7.8 IMPLICIT 67
7.9 NAMELIST 68
7.10 Service Routines 69

- 1 -

1. Introduction

The British Computer Society's Specialist Group on Fortran
held its first meeting on Tuesday 6th January 1970. As a
step towards standardizing and developing the language it
was decided that a report should be produced to "review
implementations against the existing ASI standards(1) in
regard to syntax and semantics". This is that report.

1.1 The Aims of this Report

This report examines some widely used compilers and shows
where they diverge from the ASI standards. It also
examines some extra facilities which are not in the ASI
standards but are none the less widely implemented or
popular at individual installations.

The only compilers examined in this report are those with
which the authors have had experience. They felt it
foolish to include any more because only practical
experience can show up the subtle shades of interpretation
given to the ASI standard by different writers of
compilers. Nevertheless the range of compilers dealt with
here does cover those used by a large section of the
Fortran programming community in Britain.

This report deals only with Fortran compilers; not Basic
Fortran.

1.2 The Form of the Report

Identifying the differences between different dialects of
Fortran is a Herculean task which has been valiantly
undertaken by others (2) (3) (4) (5) & (6). In this report
a feature is included only if:

(a) it deviates from the ASI standards on at least
one compiler, or

(b) there are compelling extensions to it.

Features which have been implemented in strict accordance
with the standards are not included.

- 2 -

For every facility included here a reference is made to
the relevant paragraphs of the ASI Standard (1). For
example the section on the CALL statement is introduced
by:

5.4 CALL ASI 7.1.2.4 & 8.4.2

This approach has been adopted in preference to
reproducing the formal descriptions, thereby making this
report so long that it would never be read.

To simplify the task of keeping this report up-to-date
each facility is presented on its own sheet. These are
grouped into chapters and arranged alphabetically within
each. Chapters cover general topics such as the flow of
control within a subprogram or input and output.

The notation used is that of the ASI Standard (1).

1.3 The Compilers Examined

These are the compilers reviewed. Each is given a letter
which becomes its name for the rest of the report. The
references are to the manufacturer's manuals:

Compiler A is the Fortran Compiler on Control Data
Corporation's 6600 computer (8).

Compiler B is the L-level Compiler on Honeywell's 200
computer(9).

Compiler C is the G-level compiler on International
Business Machines' System 360 computer(10).

Compiler D is the 32K Disc Compiler called XFAT/2C on
International Computers' 1900 computer(11).

Compiler E is the Fortran IV Compiler on International
Computers' System 4 computer(12).

Compiler F is the Fortran V Compiler on Univac's 1108
computer(13).

- 3 -

1.4 Acknowledgements

The authors thank the British Computer Society's Fortran
Specialist Group for this opportunity to make constructive
comments on a problem which has exasperated both of them
on many occasions. A list of people who have contributed
to their knowledge of the quirks of each compiler is too
long to include, and it would in any case be unfair to lay
the blame for any inaccuracies this report may contain at
anyone's feet but the authors'.

1.5 References

1. 'American Standard Fortran', published by the
American Standards Association Incorporated as
Standard X3.9-1966.

2. 'A Study of Fortran Compatibility' by C.F. Schofield
published by the University of London Atlas
Computing Service in 1968.

3. 'Standard Fortran Specification' published by Mott,
Hay and Anderson in 1967.

4. 'Standard Fortran Programming Manual' published by
the National Computing Centre.

5. 'Fortran Programming' by Fredric Stuart published by
John Wiley & Sons, Inc. in 1969.

6. 'Programming Languages' by Jean E. Sammet published
by Prentice-Hall, Inc. in 1969.

7. 'Fortran - A Comparative Study' by P. Bryant
published by the Science Research Council, Atlas
Computer Laboratory in 1968.

8. '6400/6500/6600 Computer Systems. Fortran Reference
Manual' published by the Control Data Corporation in
1969, reference '60174900 Rev.C'.

9. 'Series 200/Mod 2 (Extended) Fortran Compiler L'
published by Honeywell in December 1968, reference
'File Number 123.1305.002L.3-718'.

 - 4 -

10. 'System/360. Fortran IV Language' published by
International Business Machines in 1966, reference
'Form C28-6515-6'.

11. 'Fortran. 1900 Series' published by International
Computers Limited in 1968, reference 'Technical
Publication 4088(TL1167)'.

12. 'System 4. Fortran Reference Manual' published by
International Computers Limited, reference
'Technical Publication 1060'.

13. '1108 Fortran V Programmers Reference' published by
Univac, reference 'UP4060 Rev.1.'.

- 5 -

CHAPTER 2

THE WRITTEN FORM OF FORTRAN

This chapter examines the
way Fortran program is
prepared for compilation.
Statement-labels are not
discussed because each
compiler appears to provide
these in accordance with
the Standard (ASI 3.4).

- 6 -

2.1 CHARACTER SET ASI 3.1

EXTENSIONS: Compilers C, D, E and F include the characters ' and
&. Compiler F also includes the character @ and
Compiler B the character : .

- 7 -

2.2 COMMENTS ASI 3.2.1

DIFFERENCES: Compiler C deletes the 31st and subsequent comment
lines if there are more than 30 contiguous comment
lines between two consecutive statements.

EXTENSIONS: 1. Continuations

Compilers D and F accept comments immediately before
a continuation line.

2. Page Control

Compiler A accepts $ or * in place of C to introduce
a comment. It also accepts a decimal point and this
causes a new page to be started at compilation time.

- 8 -

2.3 NAMES ASI 3.5

EXTENSIONS: 1. Length of Names

Compiler D permits up to 32 characters in a name,
Compiler A up to 7 (but a name may not be the letter
0 followed by 6 digits) and although Compiler C
accepts long names it treats only the first six
characters as significant and prints a warning if
more than six appear.

2. Additional Characters

Compilers C and E treat the character $ as
alphabetic.

- 9 -

2.4 ORDER OF STATEMENTS ASI 9.1.1, 9.1.2,
 9.1.3 & 9.1.5

REMARK: The Standard (in effect) states that the order of
statements for a main program, subroutine or
function must be:

(a) SUBROUTINE or FUNCTION statement, if
appropriate.

(b) Specification statements, if any.
(c) Statement function definitions, if any.
(d) Executable statements; at least one must be

present.
(e) END

FORMAT statements may be interspersed with (b), (c)
and (d) and DATA statements with (c) and (d).

The order of statements in a BLOCK DATA subprogram
is discussed under the heading 'BLOCK DATA'.

DIFFERENCES: 1. Heading of Main Program

Compiler A requires and Compiler E permits a PROGRAM
statement at the start of the main program. Compiler
D requires a MASTER statement.

2. Constraints on the Order

Compiler D requires statements to be ordered more
rigidly than the Standard. Compilers A, B and E do
not specify an order although some notes on ordering
do appear in their manuals against individual
statements such as COMMON and Statement Functions.
Compiler F recommends an order but states that
deviations from it are not necessarily wrong.

EXTENSIONS: Compiler C requires that IMPLICIT declarations
appear between (a) and (b), that NAMELIST statements
obey the same rules as FORMAT statements and that
DATA statements may be interspersed with (b) as long
as initialized variables do not appear in later
specification statements.

- 10 -

2.5 WRITING A STATEMENT ASI 3.2.3, 3.2.4
 & 3.3

DIFFERENCES: Compiler A requires that columns 1 to 5 of a
continuation line are blank.

EXTENSIONS: 1. Comments

Compiler F accepts the character @ in a statement
and ignores the remainder of the line, thus allowing
comments on any line. The character @ in a Hollerith
constant is treated as part of the constant.

2. Multiple Statements

Compiler A accepts several statements on one line,
each separated by the character $. FORMAT statements
and DATA statements may not use this facility.

- 11 -

CHAPTER 3

DECLARING AND MANIPULATING DATA

This chapter examines the
way data are declared,
allocated storage-space and
manipulated. The way an
array is mapped onto the
computer's store is not
described because each
compiler appears to do this
in accordance with the
Standard (ASI 7.2.1.1.1).
For the same reason arrays
and array-elements are not
discussed (ASI 5.1.3 and
5.1.3.1).

- 12 -

3.1 ARITHMETIC EXPRESSIONS ASI 6.1 & 6.4

EXTENSIONS: 1. Mixed-Mode

All six compilers permit mixed-mode expressions
except Compilers D and F which do not allow Complex
and Double to be mixed. Compiler A permits
arithmetic operations on logical variables which are
treated in this context as integers.

2. Unary Operators

Compiler F permits a unary minus to follow another
operator in some situations, for example A/B.
Compiler A permits unary minus to follow two stars.

3. Exponentiation

Compilers C and E permit A**B**C and evaluate it
from right to left.

Compilers B, C, D and F permit a Real or a Double to
exponentiate an Integer. Compiler F permits a Real
to exponentiate a Complex and Compiler A permits an
Integer to exponentiate a Logical.

- 13 -

3.2 ASSIGNMENT ASI 7.1.1.1 & 7.1.1.2

EXTENSIONS: 1. Mixed Assignment

Compilers A, B, C, E and F permit these mixed
assignments in addition to the Standard's:

I=C, R=C, D=C, C=I, C=R, C=D

Compiler F also permits:

I=typeless, L=typeless, R=typeless, I='ch.string'

Compiler A permits any variable except a logical to
be assigned a masking expression, and also allows
any other type of expression to be assigned to a
logical. Compiler F permits assignment into any
binary subfield of a variable.

2. Multiple Assignment

Compilers A and D permit multiple assignment.

- 14 -

3.3 COMMON ASI 7.2.1.3

DIFFERENCES: 1. Alignment of Variables

Because of the architecture of the computers for
Compilers C and E COMMON storage can not in general
be mapped into the store in accordance with the
Standard (ASI 7.2.1.3.1.1). Compiler E requires the
programmer to arrange Common variables in decreasing
order of length (i.e. 16-byte variables first, then
8-byte variables, then 4, then 2 and then 1).
Compiler C recommends this procedure; if it is not
followed the program will run, but will 'lose
considerable object-time efficiency'.

2. Limits

Compiler A limits the number of labelled Common
Blocks to 61. Compiler B permits only 16 in each
chain (a program can be as many as 999 chains).

EXTENSIONS: 1. DATA and COMMON

Compilers A and F allow initialization of variables
in a Common Block in any subprogram in which the
Block appears.

2. Name of Block

Compiler A permits the name of a Common Block to be
up to seven characters. A nonnegative integer may
also be used to identify a Common Block.

3. Lengths of Blocks

Compilers D and F do not required a labelled Common
Block to be the same length everywhere it is
declared. In practice this is also true of Compiler
C provided that labelled Common Blocks which appear
in BLOCK DATA are not declared with greater length
in another subprogram. Compiler A permits variation
but requires the longest to be loaded first.

- 15 -

3.4 DATA ASI 7.2.2

DIFFERENCES: Compiler C requires the types of a variable and its
initializing constant to agree. Compiler E permits
the types to vary and converts the constant in a
suitable way.

EXTENSIONS: 1. Length of Lists

Compiler A permits the length of a list of variables
to differ from that of its list of initializing
constants, in which case the trailing part of
whichever list is longer is ignored.

Compilers C and E permit a list of constants to be
shorter than its list of variables if the last
variable is an array. Compiler D also permits
variables to be names of arrays.

Compiler F has an option to work either as Compiler
C or to permit the list of constants to be shorter
than the list of variables.

2. Form of Lists

Compilers A, B and F permit the list of variables to
include arrays and implied DO-loops as permitted in
I/O lists.

Compiler A accepts an older syntactic form of DATA
statement.

3. Constants

Compilers C and E permit the characters T and F to
be written in place of the full form of the logical
constants.

Compilers A, D and F permit a Hollerith constant to
spread across more than one variable.

Compilers A and F allow octal constants and Compiler
C allows hexadecimal constants.

- 16 -

3.5 DECLARING AN ARRAY ASI 7.2.1.1

DIFFERENCES: Compiler C requires integer variables used as
declarator-subscripts to be four bytes long.

EXTENSIONS: 1. Number of Dimensions

Compilers C, E and F permit up to 7 dimensions and
Compiler D up to 32.

2. Variable Dimensions

Compilers C, D, E and F permit integer variables
used as declarator-subscripts to be in Common.

3. Size Limits

Compiler A can not process an array with more than
131071 elements.

- 17 -

3.6 DIMENSION ASI 7.2.1.2

EXTENSIONS: Compiler F enables variables to be given initial
values as well as being defined in a DIMENSION
statement.

- 18 -

3.7 EQUIVALENCE ASI 7.2.1.4

DIFFERENCES: 1. Misalignment

Compiler E's manual does not mention dangerous
possibilities of misaligning array-boundaries.
Compiler C does not require proper alignment but
much efficiency is lost if variables are not
properly aligned.

2. Restriction on use

Compiler F does not allow equivalenced variables to
be used as subscripts or DO-loop parameters.

EXTENSIONS: 1. Arrays

Compilers A, D and F permit an array's name to be
written in place of its first element.

2. Arguments

Compiler F permits a formal argument of a subprogram
to appear in an EQUIVALENCE statement and this
forces it to be called by name. (A similar effect
can be achieved with Compiler C by using two
obliques. Compiler F ignores two obliques).

- 19 -

3.8 EXTERNAL ASI 7.2.1.5

EXTENSIONS: Compiler F permits an EXTERNAL statement to be
omitted if the name of a subprogram which should
appear in an EXTERNAL statement is referred to
directly.

Compiler A allows the Fortran II form of the
external statement, which has F in column 1.

- 20 -

3.9 THE INITIAL VALUES OF VARIABLES ASI 10.2.3

REMARK: The Standard, and all manuals, state that all values
not initialized by DATA or similar statements are
undefined when a program begins. Compiler F places
zeros in each variable and this fact is sometimes
assumed by programmers. Compilers A, C, D and E
start with garbage in each variable and what
Compiler B does is not known.

- 21 -

3.10 PRECISION ASI 5.1.1 & 7.2.3.1.1

REMARKS: The Standard does not define the precisions of each
type of data except to require that double precision
be more precise than single (ASI 4.2.3) and that
each component of a complex variable should be as
precise as a real (ASI 4.2.4).

DIFFERENCES: These are the precisions of each compiler when using
the Standard's storage-units for each variable:

COMPILER A B C D E F

LARGEST INTEGER+1 259 223 231 223 231 235

LARGEST REAL 10322 10616 1075 1076 1075 1038

SMALLEST +ve REAL 10-294 10-616 10-78 10-76 10-78 10-38

DECIMAL PRECISION 14.4 10.8 7.2 11 7.2 8.1

LARGEST DOUBLE 10322 10616 1075 1076 1075 10308

SMALLEST +ve DOUBLE 10-294 10-605 10-78 10-76 10-78 10-308

DECIMAL DOUBLE P. 28.9 21.7 16.8 20 16.8 18.1

MOST CH.S IN TEXT ∞ ∞ 255 ∞ 255 ∞

- 22 -

EXTENSIONS: 1. Large Constants

Compilers C and E assume that a constant with more
than seven digits is double precision.

2. Logical Constants

Compiler A allows logical constants to be written as
.T. and .F.

3. Octal and Hexadecimal Constants

Compilers A, B and F accept octal constants and
compiler C accepts hexadecimal constants.

- 23 -

3.11 RELATIONAL AND LOGICAL EXPRESSIONS ASI 6.2,
 6.3 & 6.4

EXTENSIONS: 1. Mixed-Mode

Compilers A, B, C, D, E and F permit arithmetic
expressions of mixed modes to be related. Complex
expressions may not be related with Compilers C and
E but Compilers B and F permit complex expressions
to be related by EQ. and NE. Compiler A allows
complex expressions but considers only their real
parts.

- 24-

3.12 STATEMENT-FUNCTIONS ASI 8.1

DIFFERENCES: Compiler A limits the number of arguments to 60.
Compiler F requires all the arguments to be used in
the expression.

EXTENSIONS: Compiler F allows a generalised statement function
(DEFINE statement); this permits a statement
function to have no arguments.

- 25 -

3.13 SUBSCRIPTS ASI 5.1.3.2 &
5.1.3.3

REMARK: Compilers B and E are remarkable in that they limit
the complexity of a subscript-expression to that
defined in the Standard.

DIFFERENCES: The manual for Compiler F is unusual in stating that
it is the programmer's responsibility to ensure that
the value of a subscript-expression remains within
its declared limits. Although not stated this is
also true of the other compilers except when using
Compilers C and D in 'debug' mode.

EXTENSIONS: Compiler D permits a subscript to be any integer
expression and Compiler C accepts any integer or
real expression. Compiler A accepts an expression
composed of integer constants and unsubscripted
variables compounded by the operators +, -, * and /.
It does not allow this more general form in an I/O
list. Compiler F accepts expressions of the form:

 α1 M1 α2 M2 … αν Mν

 where αl is + or - (α1 may be null)

 and Ml is K1*K2* … Kτ

where Kl is an integer constant, unsubscripted
variable or parameter and no more than one K
in each M may be the index of a DO-loop.

Compiler A permits reference to an element of an
array with fewer subscripts than the number declared
for the array. Subscripts may be omitted from the
right. Any so omitted are assumed to have value
unity.

- 26 -

3.14 TYPES OF DATA ASI 4.2 & 7.2.1.3.1.1

REMARK: The Standard defines these types: Integer, Real,
Double Precision, Complex, Logical and Hollerith.
Integer, Real and Logical variables occupy one
'storage unit' and Double Precision and Complex two.

DIFFERENCES: 1. Terminology

Compiler D consistently refers to Hollerith data as
'Text'.

2. Lengths

The reader is referred to the section on Common for
situations in which Compilers C and E violate the
Standard's requirements concerning the length of
each variable.

EXTENSIONS: 1. Lengths

Compilers C, D and E permit integers to occupy half
a storage unit. Logicals may be one quarter of a
unit with Compilers C and E and one half a unit with
Compiler D. Compilers C and E permit complex to
occupy four units and Compiler D can squeeze double
precision into one unit.

2. Strings of Binary Digits

Compiler F permits 'typeless' variables in which
bit-strings may be manipulated and Compiler A
provides facilities for processing bit-strings in
logical variables.

- 27 -

3.15 TYPE STATEMENTS ASI 7.2.1.6

EXTENSIONS: 1. Lengths

Compilers C and E permit the length of each variable
in bytes to be specified. Compiler F accepts these
extended syntactic forms and ignores them except for
treating REAL*8 as Double Precision. Compilers C and
E also permit the lengths to appear after each
variable.

2. Initialization

Compilers C, E and F provide forms which enable data
to be initialized as it is typed although Compilers
C and E do not allow this facility to be used in the
DOUBLE PRECISION statement.

3. Other Syntactic Variations

Compiler A accepts 'DOUBLE' in place of 'DOUBLE
PRECISION' and permits 'TYPE' to precede any type-
statement.

- 28 -

CHAPTER 4

FLOW OF CONTROL WITHIN A SUBPROGRAM

This chapter reviews features
of Fortran which affect the
flow of control within a
subprogram, including the
assignment of values to
controlling variables. The
unconditional GO TO statement
(ASI 7.1.2.1.1) is not
discussed because this appears
to be uniformly implemented by
all of the compilers.

- 29 -

4.1 ARITHMETIC IF ASI 7.1.2.2

EXTENSIONS: 1. Type of expression

Compiler F allows the expression to be 'typeless'.
Compiler A allows the expression to be complex, in
which case only the real part is considered.

2. Labels

The label fields may be left blank (Compiler F) or
be zero (Compiler D) to indicate the next statement.
The may be replaced by ASSIGNed variables on
Compiler F.

- 30 -

4.2 ASSIGN ASI 7.1.1.3

DIFFERENCES: Compilers C and E require the variable being
assigned a label to be four bytes long.

EXTENSIONS: Compiler F permits the variable to be any type as
long as it occupies one word.

- 31 -

4.3 ASSIGNED GO TO ASI 7.1.2.1.2

REMARKS: The Standard requires that the variable is one of
the labels in the list.

DIFFERENCES: 1. Type of Variable

Compilers C and D insist that the variable is not a
short integer.

2. Checking

Compilers A, C, D and F (and possibly others) do not
check at execution time that the variable
corresponds to a label in the list. However
Compilers C and F (and possibly others) do check at
compilation time that the labels in the list are
legitimate.

EXTENSIONS: 1. Syntax

The comma and the list of labels may be omitted for
Compilers A, D and F.

2. Type of Variable

Compiler F permits the variable to be any type as
long as it occupies one word.

- 32 -

4.4 COMPUTED GO TO ASI 7.1.2.1.3

EXTENSIONS: 1. Syntax

The comma between the label list and the variable is
optional for Compiler A.

2. Label List

The labels may be replaced by zero indicating the
next statement, on Compiler D and by ASSIGNed
variables on Compiler P.

3. Error Action

If the variable is out of range the actions taken
are:

Compilers A and F: program terminates in error mode.

Compilers C, D and E: program continues with next
statement.

Compiler B: action is not defined.

- 33 -

4.5 CONTINUE ASI 7.1.2.6

DIFFERENCES: Compiler A insists that a CONTINUE statement is
labelled.

- 34 -

4.6 DO ASI 7.1.2.8

DIFFERENCES: 1. Depth of Looping

Compilers C and F both permit up to 25 loops to be
nested.

2. Extended Range

Compiler A requires that if a transfer is made from
a loop's extended range back into the loop then the
transfer may not take place to the terminal
statement of the loop unless its label has already
appeared in a GO TO or ASSIGN statement.

EXTENSIONS: 1. Terminal Statements

Compiler F permits the terminal statement of a loop
to be non-executable. Compiler E permits a GO TO as
a terminal statement as long as it is preceded by a
logical IF clause.

2. Controlling Parameters

Compilers A and F permit the initial and the
terminal parameters to he zero or negative. Compiler
F also permits the initial parameter to be greater
than the terminal parameter and the incrementing
parameter to be negative.

Compiler A permits a controlling parameter to be
changed within a loop.

Compiler D accepts any integer expression in place
of a controlling parameter.

3. Extended Range

Compiler D has less restrictive rules than those in
the Standard for transferring in and out of DO-
loops.

- 35 -

4.7 LOGICAL IF ASI 7.1.2.3

EXTENSIONS: Compiler A allows the trailing statement to be
replaced by two statement-labels to which control
passes depending whether the logical is true or
false.

- 36 -

4.8 PAUSE ASI 7.1.2.7.2

DIFFERENCES: Compilers C and E treat the digits as decimal not
octal.

EXTENSIONS: Compilers B, C, D, E and F permit strings of
characters in place of the digits. Compilers C and E
allow up to 255 characters and they must be enclosed
in quotes. Compiler B allows up to 40 characters
enclosed in colons and Compiler D up to 40
characters enclosed in quotes. Compiler D also
allows up to 5 alphanumeric characters not
surrounded by other symbols and Compiler F allows up
to 6 such characters.

- 37 -

4.9 STOP ASI 7.1.2.7.1

DIFFERENCES: Compilers C and E treat the digits as decimal not
octal.

EXTENSIONS: Compiler B allows a string of up to 40 characters
enclosed in a pair of colons to replace the digits
and Compiler D allows up to 40 characters enclosed
in quotes. Compiler D also allows up to 5 characters
not enclosed by other symbols and Compiler F allows
6 such characters.

- 38 -

CHAPTER 5

CONNECTIONS BETWEEN SUBPROGRAMS

This chapter describes those
features of Fortran concerned
with subprograms and their
relationships. The
circumstances in which each
compiler calls by value or by
name are not discussed because
the picture presented by the
manuals is a blurred one. The
point is discussed in the
Standard in Sections 8.3.2 and
8.4.2 and the interested reader
is referred to Reference 7
given in Section 1.5 of this
report.

- 39 -

5.1 ARGUMENTS OF FUNCTIONS ASI 8.3.2

DIFFERENCES: 1. Limits

Compiler A limits the number of arguments to 60 and
Compiler F to 64.

2. Arguments

Compiler A debars the names of I/O buffers from an
argument-list and Compiler C forbids ASSIGNed
variables and hexadecimal constants.

3. Dimensionality

Compiler B requires an array to have the same
dimensionality in called and calling subprograms.

EXTENSIONS: 1. Hollerith Constants

Compilers A, C, D and F allow Hollerith constants as
arguments.

2. Labels

Compiler E allows the label of a FORMAT statement
preceded by & as an argument. Compilers D & F allow
the label of an executable statement as an argument;
the label is preceded by & for Compiler D and by &
or $ for Compiler F.

3. Names

Compilers D and E allow a NAMELIST name as an
argument and Compiler F allows the name of an
internal subprogram.

- 40 -

5.2 BASIC EXTERNAL FUNCTIONS ASI 8.3.3

DIFFERENCES: DMOD is intrinsic with Compilers C, E and F.

EXTENSIONS: 1. Compiler A

DABS, SNGL, DBLE, ACOS, ASIN, DSIGN, IDINT, LEGVAR,
LENGTH, RANF, TAN, LOCF, XLOCF.

2. Compiler C

CDEXP, CDLOG, ARSIN, DARSIN,
ARCOS, DARCOS, CDCOS, CDSIN, TAN, DTAN,
COTAN, DCOTAN, CDSQRT, DTANH, SINH, DSINH,
COSH, DCOSH, CDABS, ERF, DERF, ERFC, DERFC,
GAMMA, DGAMMA, ALGAMA, DLGAMA.

3. Compiler D

EXP10, ALOG2, TAN, COT, SINH, COSH, COTH,
ASIN, ACOS, ACOT, ASINH, ACOSH, ATANH, ACOTH.

4. Compiler E
CDEXP, CDLOG, CDSQRT, DTANH, CDABS, CDSIN, CDCOS.

5. Compiler F
TAN, DTAN, CTAN, ASIN, DASIN, ACOS,
DCOS, SINH, CSINH, DSINH, COSH, DCOSH,
CCOSH, DTANH, CTANH, CBRT, DCBRT, CCBRT.

- 41 -

5.3 BLOCK DATA ASI 8.5 & 9.1.4

DIFFERENCES: 1. Order of Statements

Compiler D restricts the order of statements more
rigidly than the Standard.

2. Many BLOCK DATA Subprograms

If, using Compiler C, a block is initialized in more
than one BLOCK DATA subprogram then all but one of
the subprograms are ignored.

Compiler D does not permit a block to be initialized
by more than one BLOCK DATA subprogram.

EXTENSIONS: 1. Order of Statements

Compilers C and F permit specifications followed by
DATA statements followed by more specifications
followed by more DATA statements and so on in
accordance with the rules of ASI 9.1.4.

2. Many BLOCK DATA Subprograms

Compiler A permits a BLOCK DATA Subprogram to he
named and this makes for precise control of
segmentation.

- 42 -

5.4 CALL ASI 7.1.2.4 & 8.4.2

REMARKS: Although all of the compilers accept the same form
of CALL statement they vary from the standard in the
arguments they permit. The standard requires that
all actual arguments agree with dummy arguments in
number and in type but none of the systems is known
to check this.

DIFFERENCES: 1. Number of Arguments

Compilers A and F publish a limit on the total
number of arguments (60 and 64 respectively).

2. Dimensionality

Compiler B requires an array to have the same
dimensionality in a called subprogram as in its
calling subprograms. This is not a requirement of
the standard (ASI 7.2.1.1.1).

3. Buffers

Using an array as an I/O buffer on Compiler A
precludes its use as an argument.

EXTENSIONS: 1. Labels

Compilers C, D, E and F permit statement-labels as
arguments if preceded by the character &. (Compiler
F permits $ in place of & and so does Compiler C if
the program is in BCD). Compiler A permits a
statement-label as an argument when calling two
particular system-routines only; the label is
followed by the letter S.

2. Internal Procedure

Compiler F permits the name of an internal procedure
as an argument.

- 43 -

3. Formats and Namelists

Compiler E permits a format-number as an argument
(preceded, like a label, with &). Compilers D and E
permit the transmission of a NAMELIST name.

- 44 -

5.5 FUNCTION ASI 8.3.1

DIFFERENCES: Compiler F does not permit a dummy argument
corresponding to a Hollerith constant in the
invoking reference to be a Double Precision or
Complex array.

EXTENSIONS: 1. Length of Result

Compilers C and E enable the length of the function
to be controlled by writing *b after the name, where
b is the required number of bytes. Compiler F
accepts and ignores such length-controls unless the
function is Real and *8 appears in which case it
treats it as Double Precision.

2. Type of Result

Compilers C, E and F allow a function to be typed by
a type statement in the body of the function.

3. Arguments

Compilers D and F accept * as a dummy argument
corresponding to a statement number in the
function's invokation. (Compiler F also accepts in
place of *). Compiler D accepts a dummy argument
enclosed in obliques and this causes reference by
location. Compiler F ignores obliques around a dummy
argument. Including a dummy argument in an
EQUIVALENCE statement causes it to be taken as a
call by name.

4. Form of Statement

Compiler A allows the form FORTRAN n t FUNCTION
where n is II, IV or VI and t is the type.

- 45 -

5.6 INTRINSIC FUNCTIONS ASI 8.2

DIFFERENCES: Compiler A treats these functions as external: DABS,
SNGL, DBLE, DSIGN, IDINT. Compilers C and E treat
Maximum and Minimum Functions as external although
the H-level version of Compiler C treats them as
intrinsic.

EXTENSIONS: 1. Compiler A

AND, COMPL, OR.

2. Compiler B

DFLOAT, IAND, IOR, ICOMPL, IEXCLR.
The manual does not distinguish between intrinsic
and external functions.

3. Compiler C

DMOD, DFLOAT, HFIX, DCONJG.

4. Compiler D

NINT, ANINT.

5. Compiler E

DMOD, DINT, HFIX, DFLOAT, CSNGL, DREAL,
DIMAG, CDBLE, DCMPLX, DCONJG.

6. Compiler F

AND, OR, XOR, BOOL, COMPL, LOC, FLD, DINT, DMOD,
DDIM.

- 46 -

5.7 OWN VARIABLES IN SUBPROGRAMS ASI 10.2.6

REMARKS: All six compilers preserve values of local variables
and arrays in subprograms after control has returned
to the calling program. On subsequent entries to the
subprogram all local variables have the values they
had at the last execution of a RETURN in that
subprogram, unless that program has been overlaid
between subprogram references. In this case
variables in DATA and similar statements are
reinitialized and other variables are undefined,
except by Compiler D which preserves other variables
from the previous entry. (This decision is under
review by ICL).

The Standard states that uninitialized local
variables are undefined on re-entry to a subprogram.
Many programs rely upon the preservation of
variables described above.

- 47 -

5.8 RETURN ASI 7.1.2.5

EXTENSIONS: 1. In Main Program

Compilers A, C, E and F allow RETURN in a main
program and treat it as STOP.

2. Variable Return

Compilers C, D, E and F allow RETURN i which causes
return to a statement-number passed as an argument
to the subprogram. All four compilers allow the
statement in a subroutine; only Compilers D and F
allow it in a function. Compilers C and E require
that if i is an integer variable it must not be a
short integer. Compiler F counts arguments
differently from the others. In Compiler F execution
of this statement when the i'th argument is not a
statement-number causes an error; RETURN 0 is the
standard error-exit from a program.

- 48 -

5.9 SUBROUTINE ASI 8.4

DIFFERENCES: Compiler F does not permit a dummy argument
corresponding to a Hollerith constant in the
invoking reference to be a Double Precision or
Complex array.

EXTENSIONS: Compilers C, D and E permit a dummy argument to be a
star and this corresponds with & in the calling
statement. They also accept a dummy argument
enclosed in obliques and this causes reference by
location. Compiler F permits a dummy argument to be
a $ or * and this corresponds to a statement-number
in the calling statement. It ignores obliques around
dummy arguments but the appearance of a dummy
argument in an EQUIVALENCE statement causes it to be
taken as a call by name.

- 49 -

CHAPTER 6

INPUT AND OUTPUT

This chapter discusses the
facilities in Fortran for
manipulating a computer's
peripheral devices.

- 50 -

6.1 BACKSPACE ASI 7.1.3.3.2

DIFFERENCES: Compiler C requires that the variable containing the
unit-number is four bytes long.

- 51 -

6.2 ENDFILE ASI 7.1.3.3.3

DIFFERENCES: Compiler C requires that the variable containing the
unit-number is four bytes long.

- 52 -

6.3 FORMAT ASI 7.2.3 & 7.1.3.4

REMARKS: The Standard requires that the number of characters
produced by an output-conversion must not exceed the
width of the field. It does not specify what should
happen if a number is too large for a field.

DIFFERENCES: 1. Vertical Spacing

Compiler B does not allow the symbol + as a control-
character to prevent the printer advancing.

2. Printing Zero

Compiler C always prints '0.0' for exact real zero
irrespective of the FORMAT.

3. Printing Complex Numbers

The manual for Compiler F requires that the two
components of a complex number are printed on the
same line, but this does not appear to be a
necessary constraint in practice.

4. Limits

Compiler E restricts any number used with a FORMAT
(except a literal) to less than 256.

EXTENSIONS: 1. Free Format

Compilers D, E and F provide format-free input,
Compilers D and E by accepting zero values for
field-widths, Compiler E by accepting a special Code
Y and Compiler F by accepting an empty format.

- 53 -

2. Insufficient Field Width

If a number overflows its field Compilers C, E and F
print stars in its place; Compiler A prints a single
star at the beginning of the field and then prints
as much of the number as fits in the field. Compiler
D prints a star and the number in full and ignores
the field-width.

3. Additional Codes

Compilers B, C, D, E and F permit G-Format to handle
Integers, Logicals and Doubles.

Octal I/O (using O-Format) is available with
Compilers A, B and F. Compilers C and E provide Z-
Format for handling hexadecimal I/O.
Controlled 'tab' settings (T-Format) are available
with Compilers B, C, D, E and F.

Right-justified character I/O (R-Format) is
available with Compilers A and F.

Text may appear in quotes with Compilers C, D, E and
F and surrounded by a pair of stars with Compiler A.

4. Vertical Spacing

Additional carriage-control characters are provided
by Compilers B, C, D and E. Compilers A and F treat
any carriage-control character not allowed by the
Standard as blank.

5. Interaction with I/O List

In some circumstances Compiler B accepts a variable
in an I/O List which does not match the type of the
conversion code and does a suitable conversion.
Compiler A has two rules for the interaction between
an I/O List and its FORMAT; one ASI and one its own.
A switch can be set to control which rule is used.

- 54 -

6. Limits

Compiler B restricts all field-widths to less than
64 characters.

7. Reference to Format

Compiler A permits the reference to a Format to be a
simple variable or a subscripted variable. Compiler
F accepts a simple variable. Compilers C and F
permit text in the form nH in a run time Format.
Compiler C also allows text in quotes for output
only.

8. Repeated Input

Compilers D and F provide facilities for repeatedly
rereading the same input.

- 55 -

6.4 I/O LISTS ASI 7.1.3.2.1

DIFFERENCES: Compiler B restricts the depth of implied loops to
3.

EXTENSIONS: Each compiler allows a subscript in an I/O List to
take the forms it permits elsewhere (these are
described in Section 3.13) except Compiler A which
restricts the complexity of a subscript in an I/O
List to the strict form laid down by the Standard
(ASI 5.1.3.3).

- 56 -

6.5 READ AND WRITE ASI 7.1.3

EXTENSIONS: 1. Checking Errors and End-of-File

Compilers B, C, D, E and F include optional clauses
of the form 'END=label' and 'ERR=label' in the READ
statement for checking if the end of a sequential
file is met or if errors have occurred in the
transfer. Compiler F provides the, same facilities
with WRITE. Compiler A enables IF statements to
check if these conditions have occurred.

2. Name List

Compilers A, C, E and F permit a reference to a
Format to be a reference to a Name List. Compiler D
permits reference to a Name List in a WRITE
statement only. Compiler F accepts the 'END=' and
'ERR=' in conjunction with a Name List.

3. Free Format

Compiler B permits LIST in place of the Format and
this provides I/O free of format restrictions.

- 57 -

6.6 REWIND ASI 7.1.3.3.1

DIFFFRENCES: 1. Lengths

Compiler C requires the variable to be four bytes
long.

2. Tape Marks

Compilers B and D mark the tape before rewinding.

3. Multi-file Magnetic Tapes

If the unit refers to a magnetic tape file,
Compilers A, B and F assume that REWIND refers to
the tape reel and Compilers C and E that it refers
to the current file. (Compiler D does not permit
multi-file tapes).

- 58 -

6.7 UNIT NUMBERS ASI B6

REMARKS: Most Compilers provide default numbers for referring
to the standard input device, the standard output
device and so on. These numbers can depend not only
on the compiler but also on the installation. Most
installations limit the possible range of unit-
numbers. The default numbers may be overridden in
these ways:

(a) Dynamically, by calling subroutines, with
Compiler B.

(b) Statically by specifying the unit-numbers in
the Job Control Language, with Compilers C, D
and E.

(c) Statically, by specifying the unit-numbers in
the PROGRAM Card, with Compiler A.

(d) Statically, by supplying a program containing
a table of unit-numbers to override the
standard table in the Fortran Library, with
Compiler F.

- 59 -

CHAPTER 7

SOME POPULAR EXTENSIONS

This chapter describes some
well-tried extensions to
Fortran which involve either
new statements or clothing old
statements with entirely new
meanings.

To give further indication of a
facility's popularity Fortran
Compilers provided by other
manufacturers are included in
this chapter where information
was available to the authors.
Their names are:

G Atlas Fortran V
H Burroughs
I DEC
J GE
K Hughes
L Raytheon
M RCA
N SDS

- 60 -

7.1 ABNORMAL

REMARKS: Compilers E and F provide the ABNORMAL statement for
classifying Functions so that the compilers can
generate more efficient code than they could without
this 'hint'.

AVAILABILITY: Compilers E, F.
Compiler N.

- 61 -

7.2 BUFFER IN AND OUT

REMARKS: Compiler A enables the programmer to control the way
the computer simultaneously deals with his input,
output and computation. Similar facilities are
available by Library Subprograms with Compiler F.

AVAILABILITY: Compiler A.

- 62 -

7.3 DEBUGGING AIDS

REMARKS: Compiler B provide selected tracing of variables and
labels.

Compiler C includes a DEBUG package for checking
that the bounds of selected arrays are not violated
and for tracing labels, variables and subprograms.

Compiler D provides three 'levels' of trace, Trace
0, Trace 1 and Trace 2. Trace 0 provides virtually
no debugging aids. Trace 1 (which is the default
state of the compiler) prints the results (if any)
of the 100 statements carried out before an error
caused the program to stop. Trace 2 checks accesses
to all arrays for violation of their hounds.

Compiler F provides no debugging facilities but
recommends the use of NAMELIST and its statements
for controlling source-program, INCLUDE and DELETE.

AVAILABILITY: Compilers B, C and D.

- 63 -

7.4 DIRECT ACCESS I/O

REMARKS: Compilers A and F provide Library Subprograms for
using I/O devices randomly.

Compilers C, D and E introduce the following new
statements:

DEFINE FILE
READ (u'r,f,ERR=n) list
WRITE (u'r,f) list
FIND (u'r)

Compiler B provides the same facilities as C, D and
E except that a colon replaces the prime and that
'f' can optionally be LIST.

AVAILABILITY: Compilers A, B, C, D, E and F

- 64 -

7.5 ENCODE AND DECODE

REMARKS: Compiler A enables data to be converted from binary
form to BCD form and back again whilst still in core
using ENCODE and DECODE.

Compiler F provides the same feature but the number
of characters transformed is always 132 and this
removes an argument from the statement.

Compilers D and E enable data to be 'read' from core
instead of from a peripheral device. They do it in
different ways.

AVAILABILITY: Compilers A, F.
Compiler N.

- 65 -

7.6 ENTRY

REMARKS: Compiler C's ENTRY statement is assumed to be
standard for the remainder of this section.
Compilers A, C, D, E and F implement ENTRY.

DIFFERENCES: Compiler F limits the number of ENTRYs in one
subprogram to 50, and does not permit a reference to
(in ENTRY name within a Function. (Compiler C
equivalences such a name with the name of the
Function).

Compilers A and F do not permit an ENTRY statement
to be labelled.

Compiler E requires an ENTRY in a Function to be the
same type as the function.

Compiler A does not include a list of arguments with
an ENTRY statement. It assumes the same list of
arguments as the subprogram in which it appears.

Compiler E does not require that a dummy argument
listed at more than one entry point is consistently
referenced by name or by value. If there are
contradictions at different entries the first one is
assumed.

AVAILABILITY: Compilers A, C, D, E, F.
Compilers H, J, K, L, M, N.

- 66 -

7.7 FORTRAN II I/O

REMARKS: Compilers A, C, E and F accept these Fortran II I/O
statements:

READ f, list
PRINT f, list
PUNCH f, list

Compilers A and F accept these statements:

READ INPUT TAPE u, f, list
WRITE OUTPUT TAPE u, f, list
READ TAPE u, list
WRITE TAPE u, list

- 67 -

7.8 IMPLICIT

REMARKS: Compiler C's implementation of IMPLICIT is taken as
standard for the remainder of this section. IMPLICTT
is provided by Compiler B, C, E and F.

DIFFERENCES: Compilers B and F will not accept *b in the type.

According to its manual, Compiler F does not apply
an IMPLICIT in a subprogram to its dummy arguments
but this was not found to be the case.

EXTENSIONS: Compiler F allows an arbitrary number of IMPLICIT
statements per subprogram. A type definition remains
in effect until it is redefined by a following
IMPLICIT statement.

Compilers B and F allow IMPLICIT to refer to Double
Precision variables.

AVAILABILITY: Compilers B, C, E, F.
Compilers G, I, M, N.

- 68 -

7.9 NAMELIST

REMARKS: Compiler C's implementation of NAMELIST is taken as
standard for the remainder of this section. NAMELIST
is provided by Compilers A, C, D, E and F.

DIFFERENCES: Compiler F allows $ in data where Compiler C has &.

Compiler E does not allow END as a name and &END in
data must be in a fixed position in the Record.

Compiler D does not allow NAMELIST input.

EXTENSIONS: Compiler A permits a dummy argument to appear in a
NAMELIST's name.

AVAILABILITY: Compilers A, C, D, E, F.
Compilers H, I, J, L, M, N.

- 69 -

7.10 SERVICE ROUTINES

REMARKS: Compilers A, B, C, D, E and F provide Subroutines
SLITE, SLITET, DVCHK and OVERFL.

Compilers A, B, C, E and F provide Subroutine EXIT.

Compilers A, B, C and E provide Subroutines DUMP and
PDUMP.

Compilers A, B, D and F provide Subroutine SSWTCH.

Compiler D provides SWON and SWOFF.

- 70 -

CHAPTER 8

CONCLUSIONS

This chapter is a vehicle for
the authors' prejudices. We
attempt to draw some general
conclusions from our review
hoping that those who would
attempt to extend Fortran can
nimbly sidestep the deeper
crevasses down which so many of
their predecessors plummetted.

- 71 -

8. Conclusions

This review has shown that the range of divergences from
and extensions to the Standard is wide, thus demonstrating
that compiler-writers are an ingenious breed and also that
the Standard is deliberately permissive in some areas (ASI
B1.1). As machine-independence becomes more important
these areas must be more tightly specified. Examples
include the problems of "own" variables in subprograms,
the precision of data and the interaction of a program
with its environment.

Many compilers include "minor" extensions which their
writers probably consider to be reasonable and within the
spirit of the Standard. We would ask such writers to
remember that a minor extension used many times throughout
a program causes much more havoc than a major extension
which occurs only sparsely.

Frequently extensions are made to a compiler which are not
"general". For example one compiler permits subscripts to
be general integer expressions except when used in an I/O
list where they are restricted to the form permitted by
the Standard. Some compilers provide sophisticated
facilities for controlling the number of bytes each
variable occupies but restrict variables used for certain
activities (e.g. storing statement-labels or unit-numbers)
to be four bytes long. We feel that a facility should not
be added to Fortran unless it is general.

All compilers contain limitations affecting the size of
programs they can process. No manufacturer known to the
authors publishes all the limits built into his compilers.
We feel that a manual is not complete without such a table
of limitations. When this review mentions frequently the
limitations of a particular compiler this is probably more
a reflection of the manual's honesty than the compiler's
limitations.

