
It may come as a surprise to find out that computational
physics – the discipline that today uses powerful super-
computers to crunch through vast amounts of data on,
say, the Earth’s climate – actually began in the late
1920s, some three decades before the first electronic
computers were built. One of the people responsible
for kick-starting this field was the physicist and mathe-
matician Douglas Hartree, who at the time was trying
to calculate atomic wavefunctions in order to determine
the structural properties of atoms. While the Schrö-
dinger equation can easily be solved for the hydrogen
atom, repeating the feat for multi-electron atoms in-
volves calculations that at the time were generally
thought to be intractable. Hartree, however, developed
a technique known as the self-consistent field method,
which allowed these problems to be solved numerically.
Unfortunately, his method was so laborious using the
facilities available at the time – mechanical calculators
operated by humans – that very little use was made of
it until electronic computers became available.

It was not until the Second World War, however, that
the development of such computers took off, when
they proved invaluable for code-breaking and gener-
ating artillery firing tables. After the war, many of the
scientists who had taken part in these projects were
keen to use these devices for their peace-time re-
search. Hartree himself was involved in these early ap-
plications, including advising the US military on the
use of ENIAC (the first large-scale reprogrammable
electronic computer) for calculating the ballistic prop-
erties of different types of ammunition.

At the time, programming computers was an eso-
teric art. They had to be fed instructions in “machine
code” – a language that describes every single addi-

tion, subtraction and so on in the precise order re-
quired – which was tedious to write, error-prone and
required very specialist knowledge (see box on page
32). If computers were to be applied – and hence sold
– more widely, then programming them had to become
considerably easier, and this required a language that
bore a much closer resemblance to the mathematical
problems being tackled.

With this in mind, in 1954 a team of researchers at
IBM led by John Backus, who died in March this year
aged 82, embarked on the creation of Fortran (Formula
Translation). This was the first successful “high-level”
language – i.e. it used a program known as a “compiler”
to translate commands describing the mathematical
operations to be performed into instructions in machine
code. Three years later, the first Fortran compiler be-
came commercially available, and it was not long before
physicists realized the opportunities that it offered.
Since then it has evolved through many versions, each
more powerful than the last, and even now Fortran is
still the language of choice in many areas of physics.

A perfect fit
Fortran is well suited to physics research for several
reasons. For one, it is easy to learn and use. It also has
excellent facilities for handling large amounts of data,
which is important in physics where many problems
involve large, multidimensional datasets – for example
there are often three spatial dimensions, with time as
a fourth, and wavelength or frequency as a fifth. Such
datasets are easy to manipulate in Fortran because
almost any operation that can be performed on a single
number can also be performed on an array of numbers
without any extra work from the programmer.

This year marks the 50th anniversary of the computer programming language Fortran. Since its release
in 1957 it has allowed physicists to tackle a huge variety of problems, from forecasting the weather to
looking for new particles in data from accelerators, explain Peter Crouch, Clive Page and John Pelan

Peter Crouch,

Clive Page and

John Pelan are

members of the

British Computer

Society Fortran

Specialist Group,

e-mail pccrouch@

bcs.org.uk,

www.fortran.bcs.org

Then and now

In 1957 the IBM 704

(left) was the first

computer to run

Fortran, while today

the latest version of

the language can be

found powering

climate simulations

on the UK Met

Office’s NEC SX-8

supercomputer.

Fortran faces the future at 50

C
ro

w
n

 c
o

p
yr

ig
h

t,
 t

h
e
 M

e
t

O
ff

ic
e

N
A

S
A

physicsworld.com Feature: Fortran at 50

31Physics World December 2007

In addition, Fortran produces code that can be exe-
cuted exceptionally quickly. The reason for this was
that if Fortran was to be accepted as an improvement
over programming directly in machine code, it had to
produce programs that would run as quickly as these
“hand-crafted” machine-code programs. The com-
piler was therefore written to generate programs that
used the hardware as efficiently as possible. This op-
timizing behaviour has been a hallmark of Fortran
compilers ever since. It is particularly useful for opera-
tions where a quick result is needed, or when there is a
very large amount of data to crunch through. Indeed,
in many areas of physics the amount of data to be ana-
lysed is so huge that recently researchers have been
turning to cluster computing (where several proces-
sors are linked together and work in parallel). Fortran
offers good support for parallel-machine architectures
because it has many tools for dealing with data struc-
tures such as arrays.

Astronomers and space physicists were among the
first researchers to embrace Fortran, since they needed
to analyse large amounts of data collected by telescopes.
By the late 1970s several projects had been set up to
develop dedicated software packages – such as NASA’s
FTOOLS – for analysing data from many different
sources, and these were mostly written in Fortran.
Today, cosmologists and theoretical physicists need fast
software and clusters of powerful processors to simu-
late the workings of stars and to study the evolution of
galaxies, or even the entire universe. Because of its run-
time efficiency and support for parallel hardware,
Fortran is still the language of choice in many cases.

These features also made Fortran attractive to high-
energy physicists. For example, researchers at the
CERN particle-physics lab near Geneva have been
using Fortran to analyse the data from its detectors since
1961 and it remained the main language used there until
well into the 1990s. In recent years, however, many
other languages have been introduced, such as C and
its object-oriented descendent C++ (see box above).
Indeed, Fortran has now been overtaken by C++ for
data processing in particle physics, although there are
some areas of accelerator design and tuning that have
been newly coded in the latest versions of Fortran.

More down-to-earth areas where Fortran has been
invaluable are weather forecasting – where speed is of
the essence – and climate modelling, which involves
analysing vast amounts of data and performing com-
plex mathematical operations. In fact, the climate
model HadSM3, which was developed by the UK Met
Office’s Hadley Centre, contains over one million lines
of Fortran code. Fortran is also widely used by geo-
physicists and seismologists to analyse seismic waves
in order to locate earthquakes or explosions, or to
search for oil, gas and minerals. The UK’s Atomic
Weapons Establishment (AWE), for example, uses
Fortran programs to distinguish between earthquakes
and clandestine underground nuclear tests, as well as
to simulate nuclear explosions now that testing nuclear
weapons for real is banned. Like climate modelling,
this is a very computationally intensive task because
seismic events produce several different types of waves,
each of which has to be analysed to determine its char-
acteristic frequency and amplitude.

At their fundamental level, computers perform very
primitive operations, such as adding two variables
together, comparing the relative values of two variables,
storing and fetching variables to and from main memory
and so on. By arranging sequences of these simple
operations, more complex tasks can be built up, like
solving differential equations or predicting tomorrow’s
weather. It would be impractical, if not impossible, to
program these complicated tasks manually, i.e. explicitly
describing every single addition, subtraction and so on in
the precise order required. But that is exactly what had do
be done with early electronic computers. This process is
called programming in “machine code” or “assembly language”.

It is clearly desirable to be able to program at a higher level – i.e. where
one is less concerned with the precise machinations of the computer and
more concerned with the mathematical problems at hand. Such
“high-level” languages – like Fortran – enable you to say “multiply these
two matrices together” or “find me the lowest number from this set of
numbers”. The key component of these languages is a program known as a
“compiler”, which takes the high-level program and applies the rules of the
language to generate instructions in machine code, preferably in an
optimal manner so that the computer is used efficiently. Aside from
reducing the programming effort required, high-level languages make
finding faults in a program easy because erroneous lines of code are
revealed when the program is compiled. Another advantage is that since
using a compiler effectively separates the program from the underlying
hardware – and indeed compensates for the differences between different
hardware configurations – a high-level program can be run on any machine

that supports an appropriate compiler.
Since the 1990s, so-called object-oriented languages

have also become popular with physicists. Object-oriented
programming was intended to make it easier to write
complex but high-quality programs because object-
oriented programs are built up using many small modules,
each of which constitutes a program in its own right.
As such, an object-oriented program may be seen as a
collection of co-operating objects, as opposed to a
traditional high-level program that is just a list of
instructions to the computer. The downside is that the
budding object-oriented programmer needs to learn about

many arcane computer-science concepts, whereas the Fortran programmer
does not. In addition, the problems solved by physicists tend to need more
attention to algorithms rather than data structures, thus making object-
oriented programming less relevant.

Some modern high-level languages can also be “interpreted” – meaning
that the commands are converted to machine code as they are entered
without going through the compilation step. Such interpreted languages –
such as Java and Matlab – can be easy to use, but they suffer from two
main disadvantages compared with compiled languages such as Fortran.
The first is that language errors, which would be picked up by a compiler,
are only revealed when the program is run. The second is that such
languages are slower than a compiled language since the translation into
machine code has to be repeated to some extent, and cannot be optimized
in the same way. Typical number-crunching programs written in Java, for
example, take about twice as long to execute as those written in Fortran, so
interpreted languages are impractical for many physics applications.

What’s in a language?

Programming

pioneer

IBM’s John Backus,

who led the team

that created Fortran

in the 1950s, along

with the front cover

of the original

Fortran codebook.

IB
M

physicsworld.comFeature: Fortran at 50

32 Physics World December 2007

Moving with the times
The current version of Fortran – as used in HadSM3 –
would be almost unrecognizable to Backus and his col-
leagues. The language was originally designed to be
easy for scientists and engineers to learn so that they
could readily program their own problems into a com-
puter. But as IBM and the other computer manufac-
turers became more aware of how physicists actually
wanted to use computers, these firms steadily added
new features to their compilers. By 1964 there were
43 different Fortran compilers in total.

However, the large number of compilers led to prob-
lems in exchanging programs between computers. In
1962 the American Standards Association therefore
asked the Computer Business Equipment Manufac-
turers Association (CBEMA) to develop a standard for
Fortran, which was basically a list of properties and fa-
cilities that each standard-compliant compiler must
provide. In 1966 the CBEMA brought out the first ever
standard for a programming language – ANSI Standard
X3.9-1966, now known as Fortran 66 – giving rise to a
“portable” language that could be used with all compli-
ant compilers. The success of this standard was assured
because the US government required that all Fortran
compilers that it bought had to conform to it. In the
1970s Fortran was revised to incorporate the latest pro-
gramming developments and to remove some anom-
alies from the Fortran 66 standard. The next standard,
Fortran 77, introduced a new data type, and allowed
arrays to have up to seven dimensions. It was also
adopted as an international standard, ISO 1539:1980.

During the 1980s there were major disagreements in
the Fortran community about the direction the lan-
guage should take. There were clashes between tradi-
tionalists who did not want to lose any existing features
and revisionists who wanted to add new features; and
also between “featurists” whose primary interest was
in particular features and “generalists” who were con-
cerned with the language as a whole. Resolving these
differences took considerable time and effort, and the
next revision of the standard – known as Fortran 90 –
was not published until 1991. The outcome of the de-
bate was that Fortran 90 introduced a set of tools that –
among other things – made it much easier to work with
arrays of numbers, and allowed modular programming.

By this time, however, advances in hardware and pro-
gramming-language theory had resulted in many new
languages being introduced. In particular, increasing
processor speeds meant that it was not essential to use a
compiled language for small-scale problems. Instead,
each command could be translated immediately into
machine code as the programmer entered it, which led
to the development of non-compiled languages like
Java, and integrated mathematical and graphical en-
vironments such as Matlab and Mathematica (see box
opposite). In addition, many university physics depart-
ments began to outsource their teaching of computing to
computer-science departments, where many staff did
not know that Fortran had been continually evolving
and preferred to teach one of the newer languages such
as C, Pascal or Modula-2. At this time many astronomers
and particle physicists also started to view Fortran as
outdated and switched to using C or C++ instead.

Nevertheless, there has recently been a resurgence

of interest in Fortran. The speed of computer proces-
sors – although well known for doubling about every
18 months – has now reached something of a plateau,
while the amount of data physicists want to analyse has
continued to grow rapidly. As a result, performance
gains are now likely to be achieved through the use of
parallel computing. Physicists are therefore turning to
Fortran once again, because of its good support for
parallel-machine architectures. Some supercomputers
are currently running a version of Fortran that uses
data structures known as “co-arrays”. These provide a
simple method of running identical code on a computer
cluster or supercomputer while allowing simple but
controllable transfers of data from one processor to
another. This feature is expected to be standardized in
the next version of the international Fortran standard.

In fact, there are many reasons why physicists still
choose Fortran over other languages. Even though the
first Fortran standard from 1966 bears little resem-
blance to the latest version from 2003, a very high
degree of “backward compatibility” has been retained.
Nearly all code written to the Fortran 77 standard
therefore works perfectly well with current compilers,
and code that is even older usually needs only minor
changes. This has led to the accumulation of a huge vol-
ume of well-tested code that will be valuable for years
to come, much of which is freely available in central
databases called procedure libraries. Another advant-
age of modern Fortran over many of the alternative
languages is that it is easier to write programs that are
robust and bug-free. Fortran compilers nearly always
include options to detect many common programming
errors, whereas C compilers do not. It is also generally
accepted that a high proportion of all the security vul-
nerabilities of the Internet arise from “buffer over-
flows” or “memory leaks” in programs written in C and
it is much more difficult – although it is not impossible
– to make corresponding mistakes in Fortran.

Despite the wealth of off-the-shelf software pack-
ages, there often comes a time in scientific research
when they do not do quite what is needed. It is then usu-
ally much simpler for a researcher to write the neces-
sary software than for a software expert to understand
the scientific requirements. And, true to the design
goals of John Backus and his team back in the mid-
1950s, Fortran is still one of the easiest languages for a
scientist or engineer to learn. ■

Deep impact

Fortran is used in

many areas of

science, including

astronomy, where it

has been used to

analyse distant

galaxies imaged by

the XMM-Newton

mission.

There are many
reasons why
physicists still
choose Fortran
over other
languages

G
 H

a
si

n
g
e
r,

 M
P

E
 G

a
rc

h
in

g
,

G
e
rm

a
n

y/
E

S
A

physicsworld.com Feature: Fortran at 50

33Physics World December 2007

