

Fortran 95 for the .NET
Framework

David Bailey
David.bailey@salfordsoftware.co.uk

www.salfordsoftware.co.uk

 Backed by Microsoft – will gradually
displace Win32

 Uses Just In Time technology – CPU
independent computing

 Simplifies interfaces to other .NET
languages and web applications

 .NET software is supposed to be more
secure

 Eventual access to 64-bit address
space

www.salfordsoftware.co.uk

Why .NET?

The .NET language
model

www.salfordsoftware.co.uk

 .NET is designed for pure
object oriented languages

 C# is a typical .NET language
 Compiler uses ‘metadata’

rather than header files
 The C# compiler does not have

a link phase
 The entire system library is

object oriented

Why no link phase?

www.salfordsoftware.co.uk

 A C# compilation produces an
executable or an assembly
(effectively a DLL)

 Other assemblies on which the
program depends must be
physically present to supply
metadata

 If assembly A refers to assembly B
then B cannot refer to A (except by
a trick)

IL Performance

www.salfordsoftware.co.uk

 Somewhere between optimised and
non-optimised native code

 Difficult to find truly representative
benchmark

 Integer performance relatively
better than floating-point
performance

 IL optimiser for FTN95 still under
construction

 IL code optimised by JIT compiler

Whetstone Benchmark

333.5

395.9

378.9

300
310
320
330
340
350
360
370
380
390
400

M whet/ s

IA32 Unoptimised
IA32 Optimised
IL Unoptimised

www.salfordsoftware.co.uk

LINPACK Benchmark

167.2

245
222.4

0

50

100

150

200

250

MFLOPS

IA32 Unoptimised
IA32 Optimised
IL Unoptimised

www.salfordsoftware.co.uk

LARGMAT8 Benchmark
39.98

15.2

23.06

0

5

10

15

20

25

30

35

40

Seconds (lower is better)

IA32 Unoptimised
IA32 Optimised
IL Unoptimised

www.salfordsoftware.co.uk

 Must compile the whole of Fortran
 ENTRY, EQUIVALENCE, COMMON,

contained routines
 The .NET environment assumes

that routine interfaces are always
present

 No (public) .NET object format
 .NET arrays are inefficient and do

not work with EQUIVALENCE or
COMMON

Fortran issues

www.salfordsoftware.co.uk

 Re-introduce object format (.DBK)
 Linker DBK_LINK creates assemblies in a

Fortran aware fashion
 Link diagnostics are Fortran specific
 DBK_LINK resolves ENTRY statements and

contained routines
 Matches routine calls in a Fortran specific

fashion
 Every Fortran routine becomes a static

method of a class. MODULE’s and
COMMON become static members.

FTN95 solutions(1)

www.salfordsoftware.co.uk

 Arrays use unmanaged memory - array bound
checking is added as required

 Fortran does not satisfy PEVERIFY – unsafe
constructs JIT to efficient code

 Some calls to WIN32 in the short term

 Entry points share data, but not code

 EQUIVALENCE handled using structs and
unmanaged memory

FTN95 solutions(2)

www.salfordsoftware.co.uk

 Call non-FTN95 methods with
assembly_external

 Expose CLS compliant interface
with assembly_interface

 .NET objects with
object(“System.Int32”)

 Exception handling with try…throw…
catch…finally…end try

Integration with CLS

www.salfordsoftware.co.uk

Integration with CLS
Create or call a method in a class :

subroutine blah(s)

 character(len=*), intent(in) :: s

 assembly_interface(name=“WriteLine”)

 assembly_external(name=“System.Console.WriteLine”) foo

 call foo(“{0}, world.”, s)

end subroutine

www.salfordsoftware.co.uk

www.salfordsoftware.co.uk

Integration with CLS

Namespace and class.

www.salfordsoftware.co.uk

Integration with CLS

These were specified
on the command-line
to the linker with the
option:
/n:FortSoft.SuperLib

Versioning etc. can
also be specified to
the linker.

Non-compliant method
used by FTN95 →
FTN95 calls.

The CLR types used
for some Fortran
types are not CLS
compliant or are
“unsafe”.

www.salfordsoftware.co.uk

Integration with CLS

Integration with CLS
Trapping an exception:

try

 call do_something

 catch(exception)

 call recover

 finally

 call cleanup_regardless

end try

www.salfordsoftware.co.uk

Integration with CLS
Using .NET objects :

 object("System.String")str,str1

 Object(“System.Object”)obj

 character*10 fred

 fred="r"

 str=new@("System.String",fred)

 obj=cast@(str,"System.Object")

 str1=cast@(obj,"System.String")

 call wr(str1)

 end

www.salfordsoftware.co.uk

CheckMate

 Undefined variable access
 Overwriting of DO-loop index,

constants and INTENT(IN) variables
 Dangling POINTER references
 Argument type/length mismatch
 Array bounds checking, even for
integer :: array(*)

Advanced Run Time Checking

www.salfordsoftware.co.uk

A wider perspective

 JIT technology is well suited to fast
CPU’s with plenty of memory

 CPU independent computing is
already useful (JAVA) and may
dominate in the years ahead

 Should set INTEL, AMD, and others
head to head

 Theoretically JIT technology should
out-perform traditional techniques

www.salfordsoftware.co.uk

Salford FTN95/.NET
 Full integration with Microsoft Visual

Studio .NET
 Easy to use from command line
 Good managed run-time performance
 Full access to CLR
 Advanced debugging options
 Old code runs as IL assembly without

requiring changes to source code

www.salfordsoftware.co.uk

Contacting Us
Salford Software Ltd
Adelphi House
Adelphi Street
Salford
UK
M3 6EN

web: www.salfordsoftware.co.uk
e-mail: sales@salfordsoftware.co.uk
tel: +44 161 906 1002
fax: +44 161 906 1003

www.salfordsoftware.co.uk

	Fortran 95 for the .NET Framework
	Why .NET?
	The .NET language model
	Why no link phase?
	IL Performance
	Whetstone Benchmark
	LINPACK Benchmark
	LARGMAT8 Benchmark
	Fortran issues
	FTN95 solutions(1)
	FTN95 solutions(2)
	Integration with CLS
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	CheckMate
	A wider perspective
	Salford FTN95/.NET
	Contacting Us

