
FORTRAN WORKSHOP
Organized by BCS Edinburgh Branch

and Edinburgh Regional Computing Centre
in collaboration with

BCS FORTRAN SPECIALIST GROUP

Tuesday April 6 and Wednesday April 7 1971

CONTENTS

1. Meeting Announcement and Registration Form 2

2. Reports from the Discussion Groups

2.1 Executable and Speci fication statements 4

2.2 Executable and Speci fication statements addendum 20

2.3 Input/output and type character 22

2.4 Input/output and type group joint meeting 25

2.5 Free format source 27

2.6 Free format data 29

2.7 Program structure - day 1 32

2.8 Diagnostics and program structure - day 2 34

2.9 Conversational Fortran 36

2.10 Mini computers notes from day 1 37

2.11 Small computers overall report 38

3. Minutes of the final session 40

page 1 of 40

page 2 of 40

page 3 of 40

B.C.S. Edinburgh Branch

"FORTRAN Group" (Executable & Spec. Statements)
5th/6th April, 1971

Secretary: Mr. S. V. Dyer, Ferranti Ltd., Edinburgh

Chairman: Mr. C. F. Schofield, University of London Computer Centre,
London

Attendance: Day 1 (Day 2 had more people - after merging of groups)

Name "Company" Main Interest s

S. V. Dyer Ferranti Numerical Control

C. F. Schofield U.L.C.C. Common sense
Univ. of London

I. C. Cullen B. P. Compatibility (Mobility)

Miss S. Epittem Cranfield "Standard and easy-learn”
Inst. of Tech. FORTRAN

H. Chattin P.M.A. Character handling to be
Consultants standardised

R. G. Pringle Bath Univ. General

Dr. M. A. Hennell Liverpool Univ. General

E. O. Bodger IBM Info. Character handling (mainly) +
Services no stupid restrictions +

Mobility

P. D. Baird Philips Character handling
Industries

Dr. M. Kennedy Queen's Univ. General
Belfast

Dr. J. Larmouth Cambridge Univ. General

Dr. A. C. Day Univ. Coll. General (?)
London (especially characters

(This is not a complete list - we had at least 25 on Day 2)

page 4 of 40

- 2 -

I should like to thank Mr. S. V. Dyer of Ferranti Ltd., for acting as
secretary of the group. Without his help and moderating influence the
meetings would rapidly have descended into chaos. We had a wide subject to
cover in about ten hours. Topics such as I/O; FORMAT; and program unit
“header lines" were not considered to be our problem. However the group
felt the need to discuss such statements - often, although not always, with
justification. I feel that most of the other groups‘ discussions were a
subset of ours. The CHARACTER (sic) statement is a good example of this.

No formal proposals were discussed, and the wording below is mine. It
was not possible to draw up formal proposals during the sessions, due to the
very wide prospectus - and the varied nature of the group.

The agenda was the B.C.S. paper (Ref. 1) followed by the "white paper”
issued at the meeting.

PROPOSALS (and Comments)

PR1. That two 'new' characters be added to the current standard ANSI set
(X3.2/9). These two characters are ' (prime) and ; (semi-colon).

Comments

These suffer from the usual problems (like $ often printing as £, etc.)
But semi-colon is worse in that many punching devices may not have it at all.
Most should have prime. Note that prime should not be called "apostrophe"
or quote ["]. The semi-colon may not be necessary - this depends on what we
do with multi-statement lines. The use of these two characters is described
below.

PR2. That two forms of "character" constants be introduced in addition to
the Hollerith (H) constant. These new constants are:-

nRn characters [integer constant]
and

’n characters’

There shall be no limits specified for n except that it should (?) b
greater than zero. The characters may be any of the (extended) standard set.
If the prime character appears in the second form then it should/must be
immediately be followed by another prime (no blanks, etc., may intervene).
Such contiguous primes shall be converted to one prime character by FORTRAN
processors. (Needs rewording).

[These three constants (H, R, and ') will be described as "literals"
in this report].

The form ‘n characters’ shall be equivalent to the current specifics
for nHn characters unless one (or more) of the characters is a prime - in
which case we need a clear rule.

The form nRn characters shall produce an integer constant. Loosely
speaking; an item of the form 1R character is replaced by a unique integer
between 1 and a limit L.

page 5 of 40

- 3 -

L, and the integer mapping, may be implementation dependent. Normally,
L would be a power of two, corresponding to the number of bits used to represent
a character; and the mapping is the so-called "internal character code."
Preferably, L should be 2**8. And the code mapping should be the ISO code
mapping.

The integer corresponding to nRn characters is the integer given by
"representation to base L." For example;

if K=3RABC , and
M=1RD , then
KM=4RABCD

Thus it is true that

KM=K*L+M
We can thus handle characters without ‘CHARACTER'.

If n is greater than (or equal to) the number of characters m which
can be stored in one storage unit, then only the m leftmost characters will
be significant, and the action taken for any remaining (n-m) characters shall
be undefined.

Comments

There was a very clear majority on the requirement for (not desirability
of) both new constants.

We must recommend R constants. This will be useless unless we also
have R conversion in FORMAT. The correspondence of R with R is not "irregular".
Maybe the correspondence of A and H is. We did not consider "A" constants -
if you want to do that, the "A" should mean "H" in literals (not in FORMATs).

The double embedded prime is a problem:- it i s irregular. IBM/360 (etc.)
do it. If we do not like it we must say what to do with ‘’’ and ""etc.

PR3. That "P1" (Ref. 1) shall stand: but complex operands shall also be
permitted (above D.P.) The meaning of (arithmetic) expressions containing
literals (or ‘CHARACTER’ operands) shall be undefined unless such expressions
contain no other operands or operators.

Comments

There was scant sympathy for leaving COMPLEX out due to the COMPLEX*16
problem.

PR4. That where an identifier (name) contains more than 6 characters, all
characters after the 6th shall be ignored.

Comments

Unanimous from the floor - despite my strong opposition, on the grounds
of CDC/1900 compatibility.

page 6 of 40

- 4 -

PR5. That a new type be introduced - "DOUBLE PRECISION COMPLEX". Items of
this type shall be above COMPLEX in the type hierarchy, and shall occupy 4
storage units.

Comments

None (!)

PR6. (Alternative to P1/PR5). That arithmetic and relational expressions
containing operands of different types shall be evaluated in the mode of the
"highest" type operand. (Simple!):- X+I/J. And the expression then be
evaluated from the left.

Comments

My idea - very much liked by the floor. I have been told that it is
hard to implement and makes optimising hard. But it is still a nice rule.
What is the PL/1 rule? Someone said that we should not go out of our way to
clash with PL/1 - he has a point.

PR7. Relational Expressions

That two new relational operators be introduced:

.EQV. and .NEQ.

(or .ID. and .NI.) (etc.)

These operators shall mean "the same as" or "the same bits" - i.e. a
"strict" comparison.

Comments

The problem is that (A~B) etc. can produce zero results even when A is
not the same as B. This problem appears on many machines - and thus forces
the compiler writer to plant risky efficient code - or safe slow code. This
is a serious problem which must be resolved (unanimous). It can be resolved
by the introduction of ‘CHARACTER’. Viz. - if one of the operands is of type
CHARACTER then: "I want a strict (logical) comparison - don't just subtract.”

"P1" was pretty simple minded in grouping "Arithmetic and Relational
Expressions" together. They are not the same. However, it would be nice if
they were. See also WP9 and WP9(a), (b).

PR8. ex1 .rel. ex2

If neither ex1 nor ex2 are of type logical (or CHARACTER) nor literals,
then the meaning shall be as current ANSI. [I would like to see this comparison
done in the "highest mode" - with a "real"-part-only for COMPLEX and D.P.]

If ex1(or ex2) are literals - or expressions of type CHARACTER then a
"strict" comparison shall be done.

page 7 of 40

- 5 -

If either ex1 or ex2 are of type logical then the result of the comparison
shall be undefined.

If rel is one of those under PR7 then a strict comparison shall be done
regardless of the forms of ex1 and ex2.

Problem with: (1.D2 .EQV. 1HE)--- i.e. different lengths.

PR8(a) The ALGOL "conditional expressions" were rejected by the group.

PR8(b) The SDS-invented "extended expressions" also arose. This is a real problem
because it conflicts with (syntactically) our ideas for everything else. To
put it simply, SDS treat "=" as an operator (of the highest order) - and they
thus provide a most elegant form of multiple assignment. The SDS expressions
deserve consideration.

PR9. That A**-B be accepted as A**(-B).

Comments

Unanimous (sheepwise). I do not know - except that the unary minus
should be sorted out - what is -A/B or -A**B ??

PR10. Arrays may be referenced by a single subscript. E.g.

REAL A(10,10,10)
DO 2 I=1,1000

2 A(I)=0.0

Comments

Widely accepted - but not on (?). Good FORTRAN II practice, but modern
compilers optimise and in this case the (optimisation) means punching more
source statements!

PR11. That arrays shall be permitted to have at least 7 dimensions.

Comments

Unanimous.

PR12. Another thing which had a fair amount of support was "arrays start at
A(0) - not A(1)” :- as in ALG¢L.

Again, SDS allow this - as in:

REAL A(0:10),B(3),C(-5:3.6)

We do not have to go as far as SDS, but if we allow the "0" then we
might as well finish the job. This is not hard to implement - but it could
make optimising hard.

page 8 of 40

- 6 -

APR1 Problem commas and lack thereof (examples):-
1) DO 2, I=1, 10

2) WRITE (7), J

3) PRINT 1 A

4) DATA A/1/ B/2/

5) COMMON A,//B(/) [?]

6) WRITE(6)(A(I) I=1,2)

7) GOTO(1,2,3)I

8) GOTO I(1,2,3)

1) Insertion of redundant comma after DO label. Many students do it. Why
don't we suggest it as an optional extra?

2) Same as (1) - but more regular(?)

3) Less important (especially if you have killed PRINT - that was a nasty
thing to do) - syntax problem, so not on.

4) Unanimous - comma should be optional.

5) Same as (4) - but only I thought the comma was needed by ANSI (I hope
that it is not).

6) This is like (3) - syntax problem if no comma, so probably not on.

7) Unanimous - stupid comma in computed GOTO be optional

8) Problem. Assigned GOTO comma is apparently redundant - but if left out
it looks like GOTO function. Maybe FORTRAN 2000 will accept this - so
not on?

9) Any similar problems?

APR2 That the (comma and) list of statement numbers shall be optional in the
ASSIGNed GOTO statement.

Comments

Well received, but objections raised as regards implementation. I do not
think there is an implementation problem if you are prepared to sacrifice
execution time if you leave out the labels. Most FORTRAN's let you do it.
Serious proposal.

APR3 That:-

REWIND(I) (etc.)

be allowed - because the brackets are required round

WRITE(I) (etc.)

Comments

Well received - for a revolutionary proposal (not mine). Advanced compilers
accept this - because they accept expressions anywhere.

page 9 of 40

- 7 -

APR4 REWIND (etc.) exp1, exp2, ---- expn

The exp are (integer) expressions (excluding I/O function references).
Some compilers allow this. There are no syntax problems.

APR5 New statement (M/C dependent? - so is PAUSE)

UNLOAD exp1, exp2,---- expn

This "gets rid of" the file (data set) for the job. It is very useful
for long tape jobs. [Not discussed - by us].

BPR1 That (often 'integer') expressions may appear wherever they make sense.
Viz. in:

1) Output lists (excluding I/O function references) - (any type)

2) As DO and implied DO parameters (excluding I/O functions)

3) As Computed GOTO controls

4) As "device" numbers in I/O and REWIND/UNLOAD etc statements (controversial)

5) As subscripts.

6) As adjustable array dimensions.

7) Anymore?

CPR1 That "P2" shall stand (forgetting type DOUB.PREC.COMP. - good names are
DUPLEX or COUPLE). We also want to permit literals (or CHAR. expressions)
to appear on the r.h.s. This was unanimous.

Many compilers do it this way:-

If the r.h.s. is a literal (or a CHAR.) then the r.h.s. shall be stored
in the l.h.s. "variable" without conversion of any kind. If the literal
(etc.) is too long to fit into the l.h.s. then only the m leftmost
characters shall be stored in the l.h.s. If the r.h.s. is 'shorter'
than the l.h.s. then it shall be stored in the l.h.s. left justified
with blank fill - unless it (i.e. the r.h.s.) is an R constant in which
case it will be stored right justified with zero fill.

Comments

I do not suggest that wording as the standard. If the l.h.s. is D.P.
or COMP, then use of literals on the r.h.s. should probably print a polite
but instructive message. But maybe we should allow text to be put into double
length (etc.) items?

page 10 of 40

- 8 -

CPR2 That a multiple replacement statement be permitted. We all wanted a
standard on this. The trouble is that the idea we came up with conflicts
with the SDS extended expressions. (See PR8(b)) What we suggested was:

lhs=rhs

where rhs has the meaning of ASA+CRP1; BUT lhs is a standard (ANSI) input list
(as in a READ statement). This is very elegant - and probably not hard to
implement - but it conflicts with many compilers, e.g, CDC which treat A as
A(1,1,1). Maybe the standard ASA input list should be permitted to have our
extended form (parameters may be expressions).

This goes some way to the popular request for matrix handling - in that

REAL A(10, 10, 10)
 :
 :
A=0
 :
 :

would (in execution) set all elements of A to 0. Similarly:

K,((A(I,J),I=1,J),J=1,K) = 35.7+SIN(Z)

(a bad example but gives an idea of the power). Even so, if we can do this
sort of thing with the SDS extended expression then I will opt for SDS.
Maybe we can do both by making an unsubscripted array name mean the whole
array in SDS expressions.

That is all we had to say on replacement statements. This is an area
where we can really contribute something. Someone also suggested that with
an I/P list on the l.h.s¢ we should have an O/P list on the r.h.s.

PQ1 Computed GOTO ("P3")

That P3 shall stand. And that the comma be optional.

Comments

This was generally accepted (much to my disgust). My view was that a
Computed GOTO error should kill the program. Two people agreed (strongly).
We all want a 'default' action. The Ref. 1 'status' comment is (a) wrong,
and (b) describes a bug as a "facility." As for the "rationale" it is as
easy to give an error as it is to CONTINUE (in terms of planted code), We
had a clear division between University and commercial users here. The latter
stated that they do not have errors with their GOTO's. They could be wrong -
and not know it. If P3 stands then they will never know it. Do we want to
give users a (false) sense of security, or do we want to indicate what is a
very serious programming error?

PQ1(a) That the Computed GOTO control 'variable' shall be an integer expression.

Comments

Unanimous. Maybe no problems unless the expression references a system
function (e.g. for I/O) - is this a problem?

page 11 of 40

- 9 -

From here on we should bear in mind that "expression" may perhaps also
mean SDS extended expressions (if we accept them) - this may involve new
problems since they are also replacement statements.

Clear problem if SDS expressions accepted in DO, e.g.:-

DO 2 I=J,J=3+(K=7), I=6

We can see what SDS do with this.

PQ2 DATA

That "P4" be accepted - unanimous. Also that implied DO loops be accepted
in the variable list. I said 'to what depth' = someone said 50 - I said 3.
So 3 it was (unanimous). But 3 is a funny limit if we are accepting 7 sub-
scripts. Depth 3 lets you initialize "sparse" matrices - so perhaps it is
enough.

Also that the implied DO parameters be positive integer constants
with m1.LE.m2.

PQ3 DO

We agreed on "P5" - but felt that it did not go far enough. Use of the
word "must" is P5 should be replaced by "the action shall be undefined" - if
you want to say anything (ASA usually manage to say nothing - i.e. to impose no
restrictions).

PQ3(a) Real type index and parameters in DO was proposed - but had little support
Why not? I hope the Americans are less conservative.

PQ3(b) So to the problem area. At this point I should explain that we took
DO to mean "implied DO" as well - in the latter case the parameter-expressions
should not contain any I/O system function references. We will have to
define what we mean by that (like no functions at all??). The problem area
is "P6" and "negative step.”

We decided that P6 might be irrelevant - but we were not sure. Given a
negative step P6 (as worded) is not on.

Negative step (m3) in DO is a natural and useful extension, but it makes
optimising hard. BUT a negative step may only occur if it is specified as an
expression which is not a positive integer constant (ANSI).

E.g. DO 2 I=1,2,J

So "J" is the problem - is it "+" or "-"? We said: "Who cares: so few
people write variable steps that it does not matter whether they get optimised
or not." This is true and we can therefore get rid of the "syntactical device"
suggestion. If the step is variable then the compiler writer must be_ready for
anything.

page 12 of 40

- 10 -

So the difficult problem has been solved. Back to "P6" - or a revised
version of it. The question is whether we allow the parameters (m1,m2)
to be negative or zero - regardless of the step (m3).

The group was strongly in favour of removing all restrictions. But I
pointed out that there could be implementation problems especially if the index
passed through zero. Nobody agreed with this.

I cannot resolve this m1/m2 problem (if there is a problem). But as a
user I should like to see no restrictions on m1,m2,m3. (I also want to see
a real type index).

All of that applies to implied DO (and replacement statements!) too.

PQ4 EQUIVALENCE

We agreed with “P7".

PQ4(a) The mention of "mathematical equivalence" on Page 59 of Ref. 1 was not
understood by us.

We decided it meant the "Forced Store Problem". There are 3 (at least)
classic examples of this:-

1) EQUIV(A,B)
A=2
C=B

Optimising compilers often fail on this. They put 2(A) into a register
and forget that B is the same thing - thus giving rubbish for C=B. I (and
many others) thought that ANSI had dealt with this - but other people thought
they had not. Anyway, we said that C=B should be the same as C=A (i.e. "do it
right"). If ANSI have not covered this then we should tell them to do so.

2) CALL X(A,A)
 :
 :
SUBR X(A,B)
A=2
C=B

(same problem). Do ANSI allow CALL X(A,A) ??

3) COMMON A
CALL X(A)
 :
 :
SUBR X(A)
COMMON B
A=2
C=B

(same problem). Do ANSI allow COMMON A, CALL X(A) ??

page 13 of 40

- 11 -

We cannot do much about these (but the group thought we could). Example (1)
at least should be fixed.

PQ5 (Personal comment) "Gw" conversion should be allowed too. (Not my group).
(“P8”).

PQ6 I hope we have agreed on "P11" - but the wording is unfortunate: "shall
not" etc., should be "undefined." R constants/Formats are re quired .

PQ7 IMPLICIT

"P12" accepted - unanimous. None of the IBM *n stuff wanted. Someone
wanted the PL/1 rule where not only the first character is significant. I do
not care about that much but we should word the proposal such that it welcomes
PL/1 like extensions. I suspect the next IBM FORTRAN might look a lot like
PL/1.

PQ8 (Personal comment) "P13" is out. It violates your most important
criterion.

PQ9 (Personal comment) PLEASE allow ERR as well as END They both interact
with the operating system. (“P14").

PQ10 SUBSCRIPTS

"P15" accepted - unanimous. But I am worried about functions in expressions
- we ought to clarify this situation - e.g. order of evaluation/side effects,
etc.

We also want at least 7 subscripts. (This should be in the "PR" group).

PQ11 "P16" - accepted (unanimous).

PQ12 ENTRY

"S3" - accepted. But we did not think about it. No one seems to want
ENTRY, but Mr. Muxworthy was right when he said that people underrate it. We
want ENTRY anyway. Maybe there is an OVERLAY problem (see /360 FORTRAN manual).

"Further Suggestions”

PS1 a) Yes - see CPR1.

b) Yes - same as (a).

C) Yes (more or less) - see replacement statements, CPR2.

d), (e), (f), (g) Yes - dealt with above.

page 14 of 40

- 12 -

PS2 a) Yes (DATA) see above

b) (DATA) NO. What do you mean??

PS3 c) Slight regularity problem, but answer was YES.

The problem is that "X(3)" does not mean the same thing in

REAL X(3)/5*1.0/

as in

DATA X(3)/1.0/

This is a /360 idea which is gaining wide acceptance. We wanted it.

PS4 We left functions till later (much later). DINT, NINT, and CONST were
wanted - and "Generic" transformation of routines, including automatic changing
of variable type, constants, and function names. Great idea.

Also minimum standard of accuracy for REALs (see also CONST). You can
see why I left it till later.

So to the "white paper”:-

Many people had no idea what the W.P. suggestions meant - so I put
forward my own interpretations. I hope that my ideas were what you meant.

WP1 "DO extensions”

See PQ3/a/b.

WP2 "Other loops”

Not wanted. (Unanimous)

WP3 "Multiple replacement”

See CPR2

WP4 "Matrix arithmetic”

Covered above - to an extent (see CPR2) ~ but we did not want to go mad
about it. We should not propose anything which conflicts with current PL/1,
e.g. A(*,3,*)=0

Functions not discussed.

WP5 Computed GOTO

See PQ1, PQ1(a)

page 15 of 40

- 13 -

WP6 ‘Blank labels in IF/GOTO’

Yes - we want them. General preference for zero (0) rather than null
labels - which produce ugly statements. [Alternative suggestion was * for
"next statement" - with things like 5* in Computed GOTO. I think * should be
rejected.]

Problem raised was:

ASSIGN 0 TO I
 :
 :
GOTO I

In this case the GOTO I should mean CONTINUE (if it is to be defined).
with null labels the ASSIGN statement would be

ASSIGN TO I

I do not feel that to be a problem, but still prefer "0" to "null".
Either way we want this extension.

WP? "Hollerith in replacement”

See CPR1

WP8 "ELSE in logical IF”

Not wanted, but mainly because I deferred it to WP1O. A fair amount of
interest was expressed.

WP9 "Multiple IF" (etc.)

We took this to mean

IF(A=B)IF(C=D) GOTO 3

Since this can be written

IF(A=B.AND.C=D) GOTO 3

the idea seemed odd. We rejected it. Abbreviations .A., .O., .N. wanted.

WP9(a) Notice my use of "=" for ".EQ." in the above IF. We wanted to allow for
this sort of extension. This is why we went for

A,B,C=0

rather than

A=B=C=0

Since the use of "=" for '.EQ.' conflicts with the multiple logical
replacement statement in the second form. (This is how we finished up with an
I/P list on the l.h.s.) Other syntax problems? (Yes - if we have SDS ex-
pressions).

- 14 -

WP9(b) We also want things like

IF(A.EQ.B.EQ.C.LT.D) --------

No problems. Unanimous.

WP10 "Compound IF”

This was definitely wanted by all - but was very controversial. I

page 16 of 40

described the Atlas FORTRAN V way (and SDS) ~ which is the IF followed by a
multi-statement "line" (i.e. statements separated by $ [or semi-colon] -
covering 20 cards if required). No labels may appear after a $ - so no jumps
can be made into the compound statement. The compound statement should not
contain DO or IF statements - but GOTO's (all kinds) are okay (zero labels
mean next “$").

This assumes that we accept multi-statement lines. We should (there was
not much argument about that). If we use $ as a separator we will please
CDC, but clobber /360. This is a good case for clobbering IBM - the idea of
allowing $ in names is the craziest action I have yet heard. However we can
still use ";" (like SDS).

People thought that I was talking about ALGOL block structure and this
tended to confuse the issue. So many ideas and objections were raised that I
had to call a halt. One idea that I do remember was that we follow the IF with
a DO - thus not needing multi-statement cards.

E.g. IF(A>B) DO 2 I=1,10
:
:

etc.

 2 CONTINUE

This appeared from the PL/1 expert (as did many of the best ideas). At
first sight it looks peculiar - but the more I look, the more reasonable it
seems. I like it - it is a superset of the FORTRAN V idea.

The ELSE idea was raised again, but I had had enough new ideas for one
day. Whatever we do (and we must do something) I think that we should forget
about ELSE.

The FORTRAN V/SDS method has been found very acceptable by users and is
not hard to "read". Most people thought it would lead to a mass of $ statements
which would be unreadable. This is not true. The pedant can punch one statement
(followed by a $) per card - and still get a 20 statement compound IF.

WP11 "Extended Statement Functions”

The short answer was NO. But I took this to mean the UNIVAC DEFINE/
PARAMETER (another new thing) - which nobody knew. We ought to look at the
UNIVAC ideas on this - they are powerful.

WP12 "Conditional Expressions (ALGOL)"

See PR8(a)

page 17 of 40

- 15 -

WP13 "= as operator"

See PR8(b)

WP14 Sort out Standard Functions

Yes we ought to -

e.g. ATAN 2 and IFIX/INT

But we did not discuss functions (no time).

WP15 As WP14 (distinction is invidious).

WP16 GENERIC

Yes - ver y powerful idea and I would think not hard to do - see earlier
comments. (PS4).

WP17 DINT and NINT wanted - but no time for discussion of the man y others
which would have been suggested.

WP18 "EQUIVALENCE extensions”

No. What do you mean? (EQUIV is bad enough already).

WP19 "Data in Type Statements”

See PS3.

WP20 "DATA extensions"

See PQ2.

Other ideas

QP1 Allow assigned label variables to appear in IF/GOTO (and CALL?) statements,
E.g.

IF(I-J) M,N,3
Nice idea.

QP2 Argument-driven functions e.g, SQRT(2.D0) means
DSQHK2.D0)

Yes. (Does DSQRT(2.) mean SQRT(2.) ??)

page 18 of 40

- 16 -

QP3 PUBLIC (or GLOBAL)

Wanted - unanimous. (Involves loader).

Very useful - better than COMMON.

QP4 (My idea). RETURN shall be allowed in main program - it shall mean
"return control to the operating system - or STOP if you do not have one."
I do not care what happens, but RETURN in main program should NOT be a fatal
syntax error.

QP5 That we suggest RETURN i. We should. Few people wanted it. The IBM
ways are poor. The CDC FTN (Extended) way is good. I suggest the latter be
a formal proposal.

OP6 (Clive's favourite function - so be nice to it).

We can argue about the name and the form of the arguments. This
function is entirely M/C dependent - and that is the whole idea. It is trivial
to implement, but hard to specify. The idea is a bit like ‘Generic’ - i.e. m/c
independent programming.

I will call it CONST - and it will have one text (H or prime) argument.
E.g.

I=CONST('CHARS')
gives (in I) the no. of characters which can be held in 1 storage unit.

I=CONST('MAXINT')
gives biggest integer.

X=CONST('PI')
gives PI to full real accuracy.

D=CONST('DPI')
gives PI to full d.p. accuracy.

I=CONST('ACCREAL')
gives accuracy (decimal digits) of real numbers - and so on.

Useful in so many ways - E.g. for the many programs which need CDC
double precision (29 digits):-

IF(CONSTC(ACCDP).LE.20) STOP

would save a lot of time on other machines (like /360).

This function (or functions) is unusual in that we need to specify the
arguments as well as the function name (but we cannot specify the results!)
I would very much like to see a proposal on this - we do not have to be too
formal about it. The idea was liked by the people that understood it.

And that is all we discussed, (I think).
C. F. Schofield
Group Leader Compilers

23rd April 1971 U. L. C. C.
/GED

page 19 of 40

Executable & Specification Statements

P1: The following points received general support

i) that type complex should appear in the hierarchy of types

ii) that type double precision complex should be included in the standard

iii) that expressions of mixed mode should be entirely evaluated in the

mode of the operand highest in the hierarchy contained in the

expression

iv) that the special case of contiguous operators **- should be permitted

v) An array shall be referable to with single subscript.

It was realised that this was crying for the moon.

P2: This was unanimously agreed with, subject to above comments on Pl where relevant

P3: There was unanimous agreement on the need for standard default action.

Two strong personal views were expressed in favour of this being a fatal error

condition.

P4: This was accepted, but there was a strong feeling that implicit D0-loops

should be permitted, with nest depth of 3, and positive integer constants only.

P5: Additional proposal is to remove all restrictions on ml, m2, m3.

P6: Accepted since it is a de facto standard, but only under strong objection.

P7: Accepted.

P12: Accepted.

P15: Accepted.

But some concern was expressed at what ought to be left when this proposal

is found not wholly acceptable.

(Problem area is subscripted arrays in subscript expressions for optimising

compilers).

P16: Accepted.

S3: Accepted

page 20 of 40

- 2 -

Further suggestions

a) Yes.

b) Yes with "input" lists on LHS.

c) Solved by b).

d) & e) covered.

f) Opinion divided, but consensus to keep comma.

g) Yes please.

[Editor’s note: This is a transcript of the document as circulated. The interpreta-
tion of the items is not now clear.]

page 21 of 40

Input - output

General Expressions in Output Lists

Proposal 15 in the Computer Bulletin already copes with some of the problems. Array
names should not be permitted in expressions. Functions should not perform I/O.
There was some doubt concerning the need for this extension.

T format

Changes to numeric format codes (so as not to overwrite with blanks) was felt not to
be desirable.

R format

R format introduces problems of word length. It is very machine dependent.
Furthermore, there is a lack of a data statement to correspond with it. This
format code is not needed provided that type CHARACTER is introduced with some
means of transforming single characters into small integers. Fear was expressed
that neither the format code nor the facility concerning characters might be
provided.

Reread and ENCODE/DECODE

Reread implies reading again the last record read, using a different format. ENCODE/
DECODE implies reading (or writing) from (or to) a program array. Implementations
are mostly of the ENCODE/DECODE type. This should be added to the standard as READ
and WRITE with an array name in place of the unit number. (Or possibly a character
variable or array as in WATFIV.) It was decided (with some dissension) that reread
was needed as well. This should have the keyword REREAD and the remainder of the
statement as for READ.

Format code/ and rescan are forbidden.

Free format

More the province of the conversational committee. This is needed, but there are so
many different ways in which it is being implemented at the moment.

Namelist

This is good for debugging, and many compilers provide it.

READ, PRINT, PUNCH

Many programs still use them, but the standard should not include these facilities.
A variable can be used for the logical unit number.

page 22 of 40

- 2 -

Random access

The current implementations tend to be ad hoc botches, and result in that which is
not FORTRAN. Some method is needed.

Buffer in and out

Some operating systems buffer all I/O at the moment. Buffer in and out was
rejected.

Additional Types (Proposal for type CHARACTER)

Declaration e.g.

CHARACTER* 7 A(5), B, c

means B can hold 7 characters, A is an array of 5 elements, each of which can hold
7 characters.

If the *n is omitted, *1 is assumed,

Assignment

charl = char2

where charl and char2 are character variables (subscripted or not). If char2 is
shorter than charl, the remainder of charl is filled with blanks. If char2 is
longer, the leftmost characters are assigned, Char2 may also be a Hollerith constant
or a character function reference,

DATA statement

DATA B /5HABCDE /, C /'l23'/ .

Constants shorter than variables are padded to the right with blanks.

I/O

Reading and writing can be performed using A format code, One variable corresponds
to one A descriptor, If the length of the descriptor does not equal the length of
the variable, the same action is taken as at the moment.

Core-to-core READ and WRITE

READ(c,f) list
WRITE(c,f) list

where c is a variable or array of type CHARACTER.

page 23 of 40

- 3 -

EQUIVALENCE

Character arrays and variables may be equivalenced together in any way which does
not redefine the origin of a COMMON block. Characters placed in a variable of
type character are also placed in the corresponding parts of other variables of
type character equivalenced to it.

FUNCTIONS

Character functions take the form:

CHARACTER*n FUNCTION name(pars)
.
.
.

END

Libra ry functions

External functions should be provided (1) to transform a CHARACTER*1 variable or
constant to an integer which is the ANSI representation for that character and
(2) to transform an integer into a CHARACTER*l result.

Constants

Hollerith constants are the constants corresponding to type CHARACTER.

page 24 of 40

I/O Group joined Type Group

Character*l

WATFIV

if lengths are unequal and if assignment is to the longer then the remaining
space is filled with spaces, but if assigned to the shorter then truncate.

Read(C,lOO)

Character Function creates no problem.

Mixed mode expression should be forbidden.

Character*l causes some inefficiency. Need to access substrings. Comparison
of strings of different lengths imply the shorter is expanded to the right with
spaces before the comparison is made.

One should be able to equivalence variables of different types (one of them a
character variable).

System Function to obtain internal code representation of a particular
character.
eg. J = ITOC(lHl)

Objections to WATFIV Strength
Character can be used as a subscript if Substrings
C(i) = 1 then A(C(i)) => Ability to assign
A(241) if 1 has internal code 241 Ability to ENCODE/DECODE

-> A format
Need for functions

If J = 24l then C = Character l
C = CTOI(J)

Need for Character rather than existing H & A format. Is inefficient coding
necessary to implement?

Certain machines will not have all of the character set. There is a need for a
default setting.

1900 does not have equivalent to IBM 360
CLC instruction for comparing character strings

[Editor’s note: This page has been transcribed as distributed, although the
meaning remains obscure.]

page 25 of 40

- 2 -

High level language should be removed from bit patterns. Fortran should not be
related to a particular machine.

Proposal from Colin Day

Character{*n} n may be a non zero positive unsigned integer.

Assignment statement

c1 = c2

where c2 is another character which may be of different length.

If c1 > c2 then c1 is right filled with spaces

if c1 < c2 it is truncated to length of c2 and c is declared as Character*n
C(80), A(5)

EQUIVALENCE (A5),C(75))
Read (C,l5)I,J,R

15 FORMAT(3Il0)

This may be complicated to implement on word machines.
I = IANSI(C) This will convert character
C = CANSI(I) to ANSI value and vice versa

where C must be Character*1

Character*3 C(8))
Character*2 A(5)
Equivalence (A(2), C(2))

C(1)|C(2)|
 | |

means if C contains ABC|DEF |GHI

Therefore A(2) contains DE

IF was dropped due to lack of agreement, although it was thought essential.

page 26 of 40

FREE FORMAT LAYOUT OF SOURCE CODE

The Free Format Layout of source code is necessary for

(a) small computers whose main input media is paper tape
(b) Time-sharing terminals

and desirable for large computers with a choice of input media.

Recommendations

(1) That the new standard should include a specification for free format
layout of source code and that this facility be part of the standard and
not optional. The layout should be truly free, viz. Spaces will be ignored
everywhere except in Hollerith Strings, i.e. "column 1" for comments and
"column 6“ for continuations have no significance (see also recommendations
3 and 4).

Free format layout must be provided on all forms of input (i.e.
including cards).

(2) That the ‘end of line’ be defined as

(a) a special character defined by the Operating System e.g.
‘new-line’ on paper tape.

(b) occurring immediately after the last non-blank character
preceding column 72 on cards.

(3) COMMENTS: A special character as the first non-blank character in a
line. Characters would be ignored until the end-of-line character.

(4) CONTINUATION LINES: A special character followed by an end of line
character specifies that the next line is a continuation line.

(5) To allow more than one statement per line, the end of statement be
defined as

(a) end of line
(b) a special character

N.B. in recommendations 3, 4, 5 the special character must be specified
in the Standard and should be $ or a character not already in the
FORTRAN character set. These three special characters need not be
different, e.g. the comment character and the continuation character could
both be $ and the end of statement be ; .

(6) Additions to the Character Set

(a) Tab character - to be interpreted as one or more spaces

(b) New-line character

(c) Any special characters required to provide recommendations
3, 4 and 5.

(7) That the mixing of free and fixed format layout be allowed. Thus two
directives, say FIXED and FREE, be provided to switch mode.

The current mode will remain in force until either FREE, FIXED or end
of full program occurs. Two successive FREE or FIXED directives will not

page 27 of 40

(2)

(7) Con/...

not produce an error condition.

The default mode need not be standardised but a default must be
provided.

D.H. MARWICK.
(Chairman)

page 28 of 40

FREE FORMAT OF DATA

INPUT

Recommendations

(1) That the type of the item to be read is taken from the input list.

(2) That the format allowable for each type of item be as in Table 1.

(3) That the item terminator as in Table 1 is not ignored i.e. it is considered
as part of the following item.

(4) That the statement indicating free format input be

READ (u,) input list

where u is the input unit

(The merits of

READ (u, o) input list

were also stressed both in the group and in general discussion, though it
was felt that this should be compatible with the solution to similar problems
of missing labels in the Arithmetic IF and the Computed GOTO)

NB: It was also recommended to compiler writers that the statement

READ (u,f) input list

be treated as a free format READ statement if the statement 'f' is missing.
This is felt to be desirable for mini-FORTRAN and so should be included
for upward compatibility.

(5) That free format input is not record based, but item based. Thus a new
READ statement causes the next item to be input even if this is in the
middle of what is considered to be a record in fixed format input.

NB While the group made no recommendation on the mixing of free and fixed
format READ statements, it was strongly recommended that this point be
explicitly specified in the Standard.

page 29 of 40

TABLE 1

TYPE FORMAT CHARACTERS TO BE IGNORED TERMINATOR

IN ITEM BEFORE ITEM

Integer
± integer constant
(+ is optional)

None space, new
line, tab

any character which is
not part of the integer
const. which must con-
sist of at leat 1 digit

Real
± integer constant
± real constant
(+ is optional,
Decimal exponent
is E or D)

Spaces after
the decimal
exponent

space, new
line, tab

any character which is
not part of the real
constant, which must
consist of at leat one
digit in the mantissa
and, if there is a
decimal exponent, at
leat one digit in the
exponent

Double
Precision

as for real as for real as for real as for real

Complex a pair of Real
items

as for a
pair of real
items

as for a pair
of real items

as for a pair of real
items

Logical first character
must be T or F

any alpha-
betic char-
acter

space, new
line, tab

any non-alphabetic
character

character
(CHAR*n)

any n characters none none self-terminating

[In the original typescript the table was presented in landscape mode]

page 30 of 40

OUTPUT

Recommendations

(6) That the items Output under free format must be capable of being
re-input under free format.

(7) That the field width of each item should be a multiple of x characters.
The total field width will be the smallest width able to contain the
item to be output.

(8) That each item will be preceded and followed by a space, which must be
included in the field width, and right justified in the field.

(9) That each type of item is output as follows:

Integer - to full accuracy with sign if negative
Real and Double Precision - to y significant figures, i.e. G W. y

where w is the smallest multiple of x possible (see 8)
Complex - as two Real items
Logical - T or F in a field width of x characters
Character (CHAR*n) - as the complete string, i.e. in a field of width

INT ((n+x+2)/x) * x

where INT(a/b) is the largest integer less than a/b.

(10) That the values of x and y be set as standard or be specified by the
user calling a standard subroutine, say, IOPARS(IX,IY)

e.g. CALL IOPARS (5,6)

(11) That the statement indicating free format output be the same as the free
format input statement with WRITE instead of READ (see recommendation 4)

(12) That free format output is not record based.
Thus, if there is room on the current line for the next item, it should
be output on that line, i.e.

(a) a new WRITE statement does not start to output on a new line

(b) a new line character does not split an item (see recommendations
6 and 2)

Chairman’s Comments

It became very obvious in the group and in the general discussion that
free format I/O of data has a different meaning depending on the person
and/or the application. I think there is a case for considering free
format under more than one heading and proposing standards under each
heading

e.g. (a) Simple facilities - where the application will be as a debugging aid or
a simple I/O facility for mini-FORTRAN and educational purposes.

(b) As a true alternative to Fixed Format - where fairly complex
facilities are required but details of field widths etc are not. This
facility would require new statements.

David H. Marwick
(Chairman)

page 31 of 40

FORTRAN WORKSHOP

PROGRAM STRUCTURE: SUM MARY OF DISCUSSION 6.4 . 71

1. Adjustable dimensions passed in COMMON.

This facility is not strictly necessary and may put a constraint on

implementors, particularly if the code is re-entrant. It was not

recommended.

2. Differing numbers of arguments in call and subprogram.

There should be an option to allow for differing numbers of

arguments in call and subprogram. Further, with a view to linking

other languages, the implementor should cause the number of arguments

at a subprogram call to be available, and the number of characters

in a Hollerith constant argument to be available.

3. Call by name and call by value.

The group deplored the 360's copy-in-and-copy-back rule and wished

the current practice - passing an address - to be formalized.

4. RETURN i

This was not felt to be necessary.

5. Initialization of variables.

Variables should continue to be undefined at the start of execution

of a program.

6. ENTRY

The group supported the feature already proposed (in the Bulletin)

and wished it to be extended to conform with current practice,

using the 360 implementation, and not the 6600 as a guide. ENTRY

should also be available in a FUNCTION.

7. GLOBAL-PUBLIC

This feature was not thought to be necessary.

8. Block structure and recursive calls.

These features were thought to be too fundamental a change and

could not be recommended.

9. Overlay and local variables.

There was a desire to define overlay and definition of local variables

so as to increase the portability of programs between machines.

Discussion revealed that there was more variation amongst existing

implementations than had been realized and that the matter needed

deeper discussion.

page 32 of 40

- 2 -

The only definite suggestion was that entities in blank common

should be permanently defined.

10. Dynamic Arrays.

The question of dynamic arrays was discussed. It was thought

be a most useful feature which could not be programmed around.

There was no agreement on the point at which the array size could

be decided, or whether this item could be forwarded to ANSI.

11. Compiler Electives.

The question of whether the standard should allow electives, as in

COBOL, was forwarded for more general discussion.

12. Extended Core.

If some variables are to be kept in a different store from the rest

of the data (e.g. extended core, LCS)(and this must be known at

compile time) the group deplored the introduction of new type

statements and recommended that such variables should be put in a

labelled common block with a special name.

13. Compiler Options.

Should options which are generally available - such as whether a

listing is to be printed or whether a binary deck is to be punched -

be put in a standard form, and should this be part of the Fortran

language?

14. EXTERNAL

It was suggested that the effect of the EXTERNAL statement should

be classified.

15. Other items.

There was discussion, but no positive recommendation, on correspondence

of argument types at a subprogram call and on the scope of an ASSIGN'ed

variables.

page 33 of 40

FORTRAN WORKSHOP

DIAGNOSTICS AND PROGRAM STRUCTURE: SUMMARY OF DISCUSSION 7 . 4 . 71

1. Compile-time diagnostics

There was considerable discussion on these points:

- what is a fatal diagnostic?

- should it be possible to switch off diagnostics?

- should there be a minimum standard set of diagnostics?

Agreement was reached on these points, which do not necessarily affect the

Standard:

- that it should always be possible to have printed a list of the

 variables used in a program unit,

- that manufacturers should list diagnostics and causes in their documentation,

- that a comparative study of diagnostics would be most welcome.

2. Run-time diagnostics

Discussion ranged over:

- should array bound checking be non-existent, optional or compulsory?

- should emphasis be on debugging or production?

- what should be the action at an error - jump to standard label,

 standard subroutine, main program and how can one (sensibly)

 recover control?

Agreement was reached on:

- any run time diagnostic should include at least a trace-back

 (360 terminology)

- there should be standard functions for time and date and the time

 left for this run

- that ERR= as currently implemented should be available, so that at

 least a faulty record may be skipped

- that at an error the user should be able to retain control, if only

 to skip to the next set of data and restart.

- that introduction of the PL/I "ON" condition would not fulfil Fortran

 user's needs.

Most importantly the group recommended that a working party be set up to

discuss compile-time and run-time diagnostics more thoroughly.

page 34 of 40

- 2 -

3. Random-access I/O

Four conflicting views were put forward and were not resolved:

- the IBM implementation has been widely copied and should be

 standardized,

- that no new statements are necessary as the effect can be achieved

 by subroutine calls,

- that some standard should be recommended to avoid chaos,

- that no standard should be recommended as it may restrict

 new hardware.

4. Multi-programming

There should be a statement or standard subroutine which indicated to the

operator that a device was finished with.

5. Data sets

A Fortran compiler must be such that the logical units are device-independent

at compile time. Further, the Standard should specify a minimum number

(say 8) of I/O devices which can be open at any one time.

6. Overlay

It should not be necessary for the Fortran programmer to write explicit

overlay statements in the body of a program. Common blocks and library

subroutine should be automatically placed as low as possible in an overlay

tree.

It was desirable to bring the Standard's attitude to local variables more

into line with current practice and this may be possible by defining a

segment in the Standard.

7. Standard options, debugging, comments

It was suggested that a set of standard options (e.g. source listing, object

listing) should be specifiable in a standard format. Further it was

suggested that standard debugging aids be available. (Chairman's comment:

It appears that cards beginning C$.... are gaining general acceptance, see

e.g. Computers & Automation February 1971). The group recommended against

having comments on statement lines.

D.T.Muxworthy
(Chairman)

page 35 of 40

CONVERSATIONAL

LAYOUT - of program statements

1. Line numbers essential for purposes of editing and diagnostic
reference.

2. Specify space after line number, followed by the statement.
(overridden for comments and continuation lines.)

3. CONTINUATION - special char terminating preceding line.
System should then replace post-line number delimiter by
char signifying continuation. This was not a unanimous
proposal.

4. COMMENT - no agreement.

5. INTERACTIVE COMPILERS
Editors - text versus line some confusion as to the
current ‘de facto' standard and trends.
Line numbers should not be confused with statement numbers.

DIAGNOSTICS

Uninitialised variables should be recognised by specific bit pattern.

Much discussion took place on what constituted a conversational system.

page 36 of 40

MINI-COMPUTERS

l. Consider only machines with more than 8K bytes, (4K-l6 bit words)

in the future will anybody want Fortran on smaller machines?

2. Require a well defined subset that is upward compatible, and defined

so as to be sideways compatible? (Tomorrow).

3. The new Fortran standard should allow free format for Source code

statements to allow compatibility between non-card users. (Tomorrow).

4. Interrupts or not! Hardware interrupts

a. Not expecting Software interrupts (div by zero)

b. Waiting for interrupt

c. Output under interrupts (Tomorrow).

5. READ(N,L) list or WRITE(N,L) list

If no format statement with that label then default input/output.

Input take next input field until first delimiter.

ignore leading blanks, unspecified delimiter.

Output must be capable of being reinput under free format, possibly

to full accuracy.

page 37 of 40

B.C.S. Fortran Specialist Group

Small Computers

At the Edinburgh Meeting in April the following people attended the meeting
of the working party and expressed interest in continuing the work in this field.

M.J. GARSIDE Computing Laboratory,
Cornwallis Building, The University,
Canterbury. Canterbury 66822

I. Davidson UKRSC, National Cash Register Co.,
D.W. White 206 Marylebone Road, London N.W.l.

A.S. Jordan Civil Service Dept,
Computers Division, Richmond Terrace,
Whitehall, London S.W.l.

C. Lemming Marconi Elliott Computer Systems Ltd,
Borehamwood.

M.J.D. Moway D.A.F.S. Marine Laboratory

Victoria Road, Torry, Aberdeen.
Mrs J. Muscott A.R.C. Unit of Statistics,

University of Edinburgh,
21 Buccleuch Place, Edinburgh.

A.R. Sibbald Hill Farming Research Organisation,

29 Lauder Road, Edinburgh.
D. Winstanley M.J. Bevans Ltd,

40/42 Washway Road, Sale,
Cheshire. (Home 06l-962-92l6)

B. Shearing Alcock Shearing & Partners,
8 Iddesleigh House, Caxton Street,
London S.W.l.

Report on the Edinburgh Meeting

The group had a certain difficulty in identifying what was a "Small Comput-
er". Some members thought that it was unrealistic to expect Fortran on a machine of
less than 8K bytes. Others thought that it might be possible to use Fortran as a
language for smaller machines if the programs were to be compiled on a larger ser-
vice machine.

The working party considered the available versions of Fortran on small ma-
chines and noted that there was a considerable variation in the facilities avail-
able with machines such as the Honeywell DDP5l6 appearing to offer almost full ASA
Fortran. This would seem to be a guide line as to what can be done on small ma-
chines.

The working party identified several problems that need further study and ex-
pressed the opinion that these problems were to a large extent caused by inadequa-
cies in the existing Fortran language definition. They therefore felt any revision
of ASA Fortran should take into account the needs and problems of the small comput-
er user.

page 38 of 40

- 2 -

l. Fortran Character Set

The ASA Standard lists 47 characters as being in the Fortran character set.
This led to various contortions such as .LT. for <. Various paper tape based For-
tran systems (re PDP-8) have extended the character set to allow the use of symbols
such as <. This has introduced considerable lack of compatibility which should be
rectified by an extension of the standard character set.

2. Paper Tape Fortran

ASA Fortran defines a line to be 72 characters with the statement in posi-
tions 7 thru 72. The growing use of paper tape based systems (on line and off line)
has led to local divergencies primarily in regard to a departure from the conven-
tion of commencing statements in position 7. Following Algol the symbol <;> is used
to terminate statements in multi-statement lines. The working party is not at
present putting forward concrete proposals but is pointing out the inadequacy of
the Standard to deal with a non card/batch based system.

3. Input / Output

There appears to be a need in the paper tape environment for a format-free
input. This would have an advantage in the small machine environment in that there
would be no need to hold a large run-time input/output package. The working party
is not putting forward definite proposals but would like to see some form of delim-
iter (such as ,) used to terminate input fields. The language definition should
contain some facility (such as a reference to a non-existing Format statement or to
label 0) to indicate format-free input.

A similar language facility should be provided for output in which case de-
fault printing to some pre-determined format would result.

Restrictions

The working party felt that a restricted defined subset of Standard Fortran
might be desirable on a small machine so long as this subset was upward compatible.
It was thought that some restriction on the ordering of Declarations would be ac-
ceptable if this was to reduce the size of the compiler. The EQUIVALENCE statement
seems to be of doubtful use on a small machine and the DATA statement used in sub-
-programs is of doubtful value unless linked to the Algol concept of own variable.

M.J. Garside
16th June, 1971.

page 39 of 40

Minutes of the final session of
the Fortran Workshop, held in
the William Robertson Building
George Square, Edinburgh on
Wednesday 7th April, 197l at
4.30 p.m.

1. OFFICE-HOLDERS The Specialist Group Chairman announced that
Mrs Barritt had resigned as Group secretary and that it
had been arranged that Mr D.T. Muxworthy would be minutes
and meetings secretary and Mr R.E. Day documents secretary.

2. WORKING PARTIES It was decided to set up four working parties:

subject chairman to meet in

1. Free Format D.H. Marwick Edinburgh

2. Mini-computers M.J. Garside (not fixed)

3. Diagnostics P.A. Samet London

4. Extensions B.H. Shearing London

Of these numbers 2 and 4 are essentially continuations
of existing working parties and numbers l and 3 are
new ones.

3. TRENDS Mrs Barritt urged that a consensus of opinion on future
trends, not necessarily currently acceptable as standards,
should be communicated to ANSI.

4. WORKSHOP REPORTS Mr Gatehouse asked all discussion group chairmen to
submit reports on their discussions to the secretary.
The Steering Committee were to edit them and produce a
report for the Computer Bulletin or Journal.

5. CONCLUSION Mr Gatehouse conveyed apologies for absence from the
Secretary-General of the Society, and thanked the
Edinburgh Branch and E.R.C.C. and particularly Mr R.E. Day
for their organization of the Workshop. This was a new
example of cooperation between a Specialist Group and a
Branch. Mr Gatehouse asked the participants to remember
the average user when suggesting changes to the language.
On behalf of the Edinburgh Branch, Professor Balfour
thanked the participants and Mr Day for making the
workshop such a success

page 40 of 40

