
Report from WG5 convener

Content of Fortran 2008

Framework was decided at last years’ WG5
meeting and was not substantially changed at this
year’s WG5 meeting. Two large items – bits and
intelligent macros – were left as ‘do if time’,
which made the May J3 meeting important.

In the event both were deemed to be ready, but
interoperability of pointers, allocatables,
assumed-shape arrays, and optional arguments
was not ready and has been deferred to a TR.

Interpretations

Corrigendum 1 has been published but is
unsatisfactory because of typographical changes
and will be republished.

Corrigendum 2 is ready and is going through a
final WG5 vote.

Co-array discussion at the May J3 meeting

There was a J3 discussion over moving co-arrays
to a TR or another part of the standard, despite
the WG5 decision at the Feb. meeting that it be a
‘first priority’ item.

However, the major vendors reported pressure
from users to provide co-arrays and it was
decided (straw vote 6-3-2) to keep them.

A significant argument was that it would be
unsatisfactory to renege on the decision of last
year that co-arrays would be there.

The language features that have
been chosen for Fortran 2008:

co-arrays, bits, intelligent macros, ...

John Reid,

JKR Associates, UK

Abstract

Following the WG5 meeting in Fairfax in
February and the J3 meeting in May, the
new features for Fortran 2008 have been
chosen.

This talks aims to give an overview of the
new features.

BCS Fortran AGM
8 June 2006

4

Items seen to need over a year to develop

UK-01 Co-arrays

J3-47 BITS (originally TYPELESS objects)

J3-14 Intelligent macros (supersedes
parameterized modules)

Items seen to need over 6 months to develop

J3-43 Contiguous attribute

J3-46 DO CONCURRENT

Item to be developed as a TR

J3-41/2 Interoperability of pointers,
allocatables, assumed-shape arrays, and
optional arguments

5

Minor technical changes, 1

J3-03 Execute external program

J3-12 Allocatable/pointer in generic resolution

J3-13 Internal procedure as actual argument

J3-15 Updating complex parts

J3-16 Disassociated or deallocated actual
argument associated with nonpointer
nonallocatable optional dummy argument is
considered not to be present

J3-18 Non-null initial targets for pointers

J3-19 Extend intrinsics such as ASIN to
complex arguments

J3-22 Allow a polymorphic allocatable variable
in intrinsic assignment

6

Minor technical changes, 2

J3-38 Libm: Bessel, erf, gamma, hypot

J3-39 Rank plus co-rank limited to 15.

J3-48 Writing Comma Separated Value CSV
files

RU-03 Obsolescent: ENTRY

UK-05 Guarantee support of
selected_int_kind(18)

UK-07 Pointer function references as actual
arguments

UK-08 Pointer function references assignment
contexts

UK-11 Elemental procedures that are not pure

UK-12 Recursive I/O to different unit

7

Co-arrays – basics

SPMD – Single Program, Multiple Data

Replicated to a number of images

Number of images fixed during execution

Each image has its own set of local variables

All images start by executing main program
and mostly execute asynchronously

Variables declared as co-arrays are accessible
on another image through second set of array
subscripts, delimited by []

Statements: sync_all, sync_team,
sync_images, notify, query, sync_memory

Critical construct

Collectives: co_all, co_any, etc., form_team

Intrinsics: this_image, num_images,
image_index, co_lbound, co_ubound

8

Examples of co-array syntax

real :: r[*], s[0:*], x(n)[*]

type(u) :: u2(m,n)[np,*]

! Co-arrays always have assumed

! co-size (equal to number of images)

real :: t

integer p, q, index(n)

! Local variables

:

t = s[p]

x(:) = x(:)[p]

! Reference without [] is to local part

x(:)[p] = x(:)

u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

Images have indices 1, 2, ..., num_images() and
co-subscript lists are mapped to image indices by
the usual rule.

9

Example: redistribution

Consider redistributing the array
a(1:kx,1:ky)[1:kz]
from
b(1:ky,1:kz)[1:kx],
where max(kx,kz) ≤ num_images().

iz = this_image(a)
if (iz<=kz) then

do ix = 1, kx
a(ix,:) = b(:,iz)[ix]

end do
end if

The if construct is needed so that no action is
taken on the images on which we have no data.

10

Implementation model

The compiler may arrange that a co-array, when
originally declared, occupies the same set of
addresses within each image:

A co-array must have the same set of
bounds on all images

There is an implicit synchronization of all
images at an allocate or deallocate
statement so that they all perform their
allocations and deallocations in the same
order.

On a shared-memory machine, a co-array may be
implemented as a single large array.

On any machine, a co-array may be implemented
so that each image can calculate the memory
address of an element on any image.

11

Synchronization

The images normally execute asynchronously. If
one image relies on another image having taken
an action, explicit synchronization is needed.

For example, to read data on image 1 and get it to
other images:

if(this_image()==1) read(*,*)p
sync_all
p = p[1]

12

Critical sections

Exceptionally, it may be necessary to limit
execution to one image at a time:

critical
p[6] = p[6] + 1
:

end critical

13

Dynamic co-arrays

Only dynamic form: the allocatable co-array.

Automatic arrays or array-valued functions would
require automatic synchronization, which would
be awkward.

Co-Arrays and SAVE

Unless allocatable or a dummy argument, a co-
array must be given the SAVE attribute.

This is to avoid the need for synchronization
when co-arrays go out of scope on return from a
procedure.

14

Optimization

Most of the time, the compiler can optimize as if
the image is on its own, using its temporary
storage such as cache, registers, etc.

Structure components

Types may have allocatable co-array components,
but structures of this type must be scalar.

However, a co-array may be of a derived type
with allocatable or pointer components, which
allows the size to vary from image to image.

Pointers must have targets in their own image:

q => z[i]%p ! Not allowed
allocate(z[i]%p) ! Not allowed

15

BITS

There will be a new intrinsic type, BITS. The
number of bits is specified by the kind type
parameter with default NUMERIC_STORAGE_SIZE.

Up to 4*NUMERIC_STORAGE_SIZE bits must be
supported. Processor may support more.

Concatenation operator // available.

==, /= available for bits with bits, real, integer, or
complex.

>, >=, <, <=, available for bits with bits, real, or
integer.

.AND., .OR., .XOR., .EQV., .NEQV. available
for bits with bits or integer.

.NOT. available for bits.

If the kinds differ, the shorter is padded on the
left with zeros.

16

Assignment to bits

Assignment to bits available from bits, real,
integer, or complex. If the kinds differ, digits on
the left are discarded or padded with zeros. For
types other than bits, the internal representation is
used.

Interoperability

There are 26 C types that are interoperable with
bits.

17

New intrinsics
BITS_KIND(X[,KIND]) Bits kind type parameter value

compatible with the argument

SELECTED_BITS_KIND(N) Bits kind type parameter value,

given number of bits

BITS(A [,KIND]) Conversion to bits type

DSHIFTL (I, J, SHIFT) Double left shift

DSHIFTR (I, J, SHIFT) Double right shift

MERGE_BITS (I,J,MASK) Merge bits under mask

SHIFTA (I, SHIFT) Arithmetic right shift

SHIFTL (I, SHIFT) Left shift

SHIFTR (I, SHIFT) Right shift

LEADZ (I [,KIND]) Number of leading zero bits

POPCNT (I [,KIND]) Number of one bits

POPPAR (I [,KIND]) Parity of one bits

TRAILZ (I [,KIND]) Number of trailing zero bits

MASKL (I [,KIND]) Left justified bit mask

MASKR (I [,KIND]) Right justified bit mask

IALL(ARRAY,DIM[,MASK]) Bitwise AND of array elements

or IALL(ARRAY[,MASK])

IANY(ARRAY,DIM[,MASK]) Bitwise OR of array elements

or IANY(ARRAY[,MASK])

IPARITY(ARRAY,DIM,[,MASK]) Bitwise exclusive OR of

or IPARITY(ARRAY[,MASK]) array elements

PARITY (MASK [,DIM]) True if an odd number of values

is true

18

Intelligent macros

Parameterized modules were proposed to provide
a facility whereby a module or subprogram can
be developed in a generic form, and then applied
to any appropriate type.

Malcolm pointed out that this is roughly
equivalent to a built-in macro facility, but it
misses out on useful things one can do with
macros.

By ‘intelligent’, he means that they know about
Fortran and are scoped. He wants them to be able
to create modules, types, procedures, and sections
of code.

19

The elements are the macro definition, e.g.
DEFINE MACRO :: single_linked_list(type)

TYPE type%%_list

type :: value

TYPE(type%%_list),POINTER :: next

END TYPE

END MACRO

and the later macro expansion:

EXPAND single_linked_list(real)

where the EXPAND statement is replaced by the
sequence of statements

TYPE real_list

real :: value

TYPE(real_list),POINTER :: next

END TYPE

Note that type is a macro dummy argument
whose scope is the macro definition. On
expansion it is replaced by a token or a sequence
of tokens and %% is used for concatenation during
expansion.

20

Macro IF and DO constructs

Macros may contain IF and DO constructs that
are processed during macro expansion. Here it is
likely that several macro body statements may be
needed to build a single statement, e.g.

CALL impure_scalar_procedure &&

(array(index%%1 &&

MACRO DO i=2,rank

,index%i &&

MACRO END DO

),traceinfo)

The double amphersands indicate that a single
statement is being created.

